精英家教网 > 高中数学 > 题目详情
(1)求长轴长为20,离心率等于
3
5
的椭圆的标准方程;
(2)已知点P是椭圆
x2
5
+
y2
4
=1上的点,且以点P及焦点F1,F2为定点的三角形的面积等于1,求点P的坐标.
考点:直线与圆锥曲线的关系,椭圆的标准方程
专题:计算题,圆锥曲线的定义、性质与方程
分析:(1)由椭圆的性质:长轴和离心率的公式,得到方程,以及a,b,c的关系,即可求出椭圆方程;
(2)设出点P坐标,再由三角形的面积公式,解方程,即可得到.
解答: 解:(1)由于2a=20,即a=10,又e=
c
a
=
3
5
,则c=6,
则b2=a2-c2=64,则椭圆的标准方程
x2
100
+
y2
64
=1或
y2
100
+
x2
64
=1;
(2)椭圆
x2
5
+
y2
4
=1的焦距为2c=2,设P(m,n),则
m2
5
+
n2
4
=1,
以点P及焦点F1,F2为定点的三角形的面积为S=
1
2
×2×|n|=1,
则有n=±1,m=±
15
2

则点P为(
15
2
,1),(-
15
2
,1),(-
15
2
,-1),(
15
2
,-1).
点评:本题考查椭圆的方程和性质,考查运算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

利用三角函数线判断1与|sinα|+|cosα|的大小关系是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}的各项均为正数,且2a1+a2=15,a42=9a1a5
(Ⅰ)求数列{an}的通项公式.
(Ⅱ)设bn=log3a1+log3a2+…+log3an,数列{
1
bn
}
的前n项和为Sn,若Sn
39
20
,试求n的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若数列{an]满足an2-an-12=p(p为常数,n≥2,n∈N*),则称数列{an}为等方数列,p为公方差,已知正数等方数列{an}的首项a1=1且a1,a2,a5成等比数列,a1≠a2,设集合A={Tn|Tn=
1
a1+a2
+
1
a2+a3
+…+
1
an+an+1
,1≤n≤100,n∈N*},取A的非空子集B,若B的元素都是整数,则B为“梦幻子集”,那么集合A中的“梦幻子集”的个数为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

一个直棱柱被一个平面截去一部分后所剩几何体的三视图如图所示,则该几何体的体积为(  )
A、9
B、11
C、10
D、
23
2

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)的定义域为A,若x1,x2∈A且f(x1)=f(x2)时总有x1=x2,则称f(x)为单函数,例如,函数f(x)=x+1(x∈R)是单函数,下列命题:
①函数f(x)=x2-2x(x∈R)是函数;
②若f(x)=
log2x,x≥2
x-1,x<2
是单函数;
③若f(x)为单函数,x1,x2∈A且x1≠x2,则f(x1)≠f(x2);
④若函数f(x)在定义域内某个区间D上具有单调性,则f(x)一定是单函数.
其中真命题是
 
(写出所有真命题的编号)

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2+ax+b,点(a,b)为函数y=
5-2x
x-2
的对称中心,设数列{an},{bn}满足4an+1=f(an)+2an+2(n∈N*),a1=6,且bn=
1
an+4
,{bn}的前n项和为Sn
(1)求a,b的值;
(2)求证:Sn
1
6

(3)求证:an+2≥2 2n-4+2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列A:a1,a2,a3…,an(n≥3,n∈N*)中,令TA={x|x=ai•aj,1≤i<j≤n,i,j∈N*},cord(TA)表示集合TA中元素的个数.(例如A:1,2,4,则cord(TA)=3.)若
ai+1
ai
=c(c为常数,且|c|>1,1≤i≤n-1)则cord(TA)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知不等式ax2-5x+b>0的解集为{x|x<-
1
3
或x>
1
2
},则不等式bx2-5x+a>0的解集为(  )
A、{x|-
1
3
<x<
1
2
}
B、{x|x<-
1
3
或x>
1
2
}
C、{x|-3<x<2}
D、{x|x<-3或x>2}

查看答案和解析>>

同步练习册答案