(本小题满分18分)过直线上的点作椭圆的切线、,切点分别为、,联结(1)当点在直线上运动时,证明:直线恒过定点;
(2)当∥时,定点平分线段
(1)(2)略
:设、、. 则椭圆过点、的切线方程分别为
,(3分)因为两切线都过点,则有,.这表明、均在直线 ①上.由两点决定一条直线知,式①就是直线的方程,其中满足直线的方程.………(6分)
(1)当点在直线上运动时,可理解为取遍一切实数,相应的为
代入①消去得 ②对一切恒成立. ……(9分)
变形可得对一切恒成立.故有由此解得直线恒过定点.(12分)
(2)当∥时,由式②知 解得
代入②,得此时的方程为 ③
将此方程与椭圆方程联立,消去得……(15分)
由此可得,此时截椭圆所得弦的中点横坐标恰好为点的横坐标,即
代入③式可得弦中点纵坐标恰好为点的纵坐标,即
这就是说,点平分线段.……(18分)
科目:高中数学 来源: 题型:
(本小题满分18分)如图,将圆分成个扇形区域,用3种不同颜色给每一个扇形区域染色,要求相邻区域颜色互异,把不同的染色方法种数记为。求
(Ⅰ);
(Ⅱ)与的关系式;
(Ⅲ)数列的通项公式,并证明。
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分18分)已知数列{an}、{bn}、{cn}的通项公式满足bn=an+1-an,cn=bn+1-bn(n∈N*?),若数列{bn}是一个非零常数列,则称数列{an}是一阶等差数列;若数列{cn}是一个非零常数列,则称数列{an}是二阶等差数列?(1)试写出满足条件a1=1,b1=1,cn=1(n∈N*?)的二阶等差数列{an}的前五项;(2)求满足条件(1)的二阶等差数列{an}的通项公式an;(3)若数列{an}首项a1=2,且满足cn-bn+1+3an=-2n+1(n∈N*?),求数列{an}的通项公式
查看答案和解析>>
科目:高中数学 来源:2011-2012学年上海市长宁区高三教学质量测试理科数学 题型:解答题
(本小题满分18分) 本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.
(文)已知数列中,
(1)求证数列不是等比数列,并求该数列的通项公式;
(2)求数列的前项和;
(3)设数列的前项和为,若对任意恒成立,求的最小值.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年上海市长宁区高三教学质量测试理科数学 题型:解答题
本小题满分18分) 本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.
设函数是定义域为R的奇函数.
(1)求k值;
(2)(文)当时,试判断函数单调性并求不等式f(x2+2x)+f(x-4)>0的解集;
(理)若f(1)<0,试判断函数单调性并求使不等式恒成立的的取值范围;
(3)若f(1)=,且g(x)=a 2x+a - 2x-2m f(x) 在[1,+∞)上的最小值为-2,求m的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com