精英家教网 > 高中数学 > 题目详情
11、某造船公司年造船量是20艘,已知造船x艘的产值函数为R(x)=3 700x+45x2-10x3(单位:万元),成本函数为C(x)=460x+5 000(单位:万元),又在经济学中,函数f(x)的边际函数Mf(x)定义为Mf(x)=f(x+1)-f(x).
(1)求利润函数P(x)及边际利润函数MP(x);(提示:利润=产值-成本)
(2)问年造船量安排多少艘时,可使公司造船的年利润最大?
(3)求边际利润函数MP(x)的单调递减区间,并说明单调递减在本题中的实际意义是什么?
分析:(1)根据利润=产值-成本,及边际函数Mf(x)定义得出利润函数P(x)及边际利润函数MP(x);
(2)先对利润函数P(x)求导数,P′(x)=-30x2+90x+3240=-30(x-12)(x+9),利用导数研究它的单调性,从而求得其最大值,即可得出年造船量安排多少艘时,可使公司造船的年利润最大.
(3)根据MP(x)=-30x2+60x+3275=-30(x-1)2+3305.利用二次函数的性质研究它的单调性,最后得出单调递减在本题中的实际意义单调递减在本题中的实际意义即可.
解答:解:(1)P(x)=R(x)-C(x)=-10x3+45x2+3240x-5000(x∈N*,且1≤x≤20);
MP(x)=P(x+1)-P(x)=-30x2+60x+3275(x∈N*,且1≤x≤19).
(2)P′(x)=-30x2+90x+3240=-30(x-12)(x+9),
∵x>0,∴P′(x)=0时,x=12,
∴当0<x<12时,
P′(x)>0,当x>12时,P′(x)<0,
∴x=12时,P(x)有最大值.
即年造船量安排12艘时,可使公司造船的年利润最大.
(3)MP(x)=-30x2+60x+3275=-30(x-1)2+3305.
所以,当x≥1时,MP(x)单调递减,
所以单调减区间为[1,19],且x∈N*
MP(x)是减函数的实际意义,随着产量的增加,每艘利润与前一艘利润比较,利润在减少.
点评:利用导数解决生活中的优化问题,关键是要建立恰当的数学模型,把问题中所涉及的几个变量转化为函数关系式,这需要通过分析、联想、抽象和转化完成.函数的最值要由极值和端点的函数值确定.当函数定义域是开区间且在区间上只有一个极值时,这个极值就是它的最值.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某造船公司年造船量是20艘,已知造船x艘的产值函数为R(x)=3700x+45x2-10x3(单位:万元),成本函数C(x)=460x+5000(单位:万元)
(1)求利润函数P(x);(提示:利润=产值-成本)
(2)问年造船量安排多少艘时,可使公司造船的年利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

某造船公司年造船量是20艘,已知造船艘的产值函数为R(x)=3700x+45x2-10x3(单位:万元),成本函数为C(x)=460x+5000(单位:万元),又在经济学中,函数f(x)的边际函数Mf(x)定义为Mf(x)=f(x+1)-f(x)。

(Ⅰ)求利润函数P(x)及边际利润函数MP(x);(提示:利润=产值成本)

(Ⅱ)问年造船量安排多少艘时,可使公司造船的年利润最大?

(Ⅲ)求边际利润函数MP(x)单调递减时x的取值范围,并说明单调递减在本题中的实际意义是什么?

查看答案和解析>>

科目:高中数学 来源:2010-2011年福建省四地六校高二下学期第一次月考数学理卷 题型:解答题

((本小题12分)某造船公司年造船量是20艘,已知造船艘的产值函数为

(单位:万元),成本函数为(单位:万元),又在经济学中,函数的边际函数定义为

(Ⅰ)求利润函数及边际利润函数;(提示:利润=产值-成本)

(Ⅱ)问年造船量安排多少艘时,可使公司造船的年利润最大?

(Ⅲ)求边际利润函数单调递减时的取值范围。

 

 

查看答案和解析>>

科目:高中数学 来源:2010-2011年新疆农七七师高级中学高二下学期第一学段考试理科数学 题型:解答题

(本小题12分)

某造船公司年造船量是20艘,已知造船艘的产值函数为(单位:万元),成本函数为(单位:万元),又在经济学中,函数的边际函数定义为

(Ⅰ)求利润函数及边际利润函数;(提示:利润=产值-成本)

(Ⅱ)问年造船量安排多少艘时,可使公司造船的年利润最大?

(Ⅲ)求边际利润函数单调递减时的取值范围。

 

查看答案和解析>>

同步练习册答案