精英家教网 > 高中数学 > 题目详情
9.已知F1,F2为椭圆C:$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{8}$=1的左、右焦点,点E是椭圆C上的动点,$\overrightarrow{EF}$1•$\overrightarrow{EF}$2的最大值、最小值分别为(  )
A.9,7B.8,7C.9,8D.17,8

分析 设出点E的坐标,进而可表示出$\overrightarrow{EF}$1,$\overrightarrow{EF}$2,运用向量的数量积的坐标表示和x的范围确定$\overrightarrow{EF}$1•$\overrightarrow{EF}$2的最值.

解答 解:由椭圆C:$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{8}$=1可得a=3,b=2$\sqrt{2}$,c=$\sqrt{{a}^{2}-{b}^{2}}$=1,
知F1(-1,0),F2(1,0),
设E(x,y),即有$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{8}$=1,即y2=8(1-$\frac{{x}^{2}}{9}$),
则 $\overrightarrow{EF}$1=(-1-x,-y),$\overrightarrow{EF}$2=(1-x,-y),
$\overrightarrow{EF}$1•$\overrightarrow{EF}$2=(-1-x)(1-x)+y2
=x2+y2-1=7+$\frac{{x}^{2}}{9}$,
∵x∈[-3,3],∴0≤x2≤9,
故$\overrightarrow{EF}$1•$\overrightarrow{EF}$2的最大值∈[7,8]
故最大值8,最小值7.
故选:B.

点评 本题主要考查了椭圆的应用.解答的关键是运用平面向量的数量积的坐标表示.考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.过点P(1,2)作圆(x+1)2+(y+1)2=1的两条切线,切点分别为A,B,则$\overrightarrow{PA}$•$\overrightarrow{PB}$=(  )
A.$\frac{121}{12}$B.$\frac{125}{12}$C.$\frac{131}{13}$D.$\frac{132}{13}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.如图,三棱锥V-ABC的底面ABC为正三角形,侧面VAC与底面ABC垂直,且VA=VC,以平面VAC为正视图的投影面,其正视图的面积为$\frac{2}{3}$,则其侧视图的面积为$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图:在直角坐标系xoy中,设椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左右两个焦点分别为F1、F2.过右焦点F2与x轴垂直的直线l与椭圆C相交,其中一个交点为$M(\sqrt{2},1)$.
(1)求椭圆C的方程;
(2)设椭圆C的一个顶点为B(0,-b),求点M到直线BF1的距离;
(3)过F1M中点的直线l1交椭圆于P、Q两点,求|PQ|长的最大值以及相应的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)过点P(1,$\frac{3}{2}$),离心率e=$\frac{1}{2}$.
(Ⅰ)求椭圆C的方程
(Ⅱ)已知直线l:x=my+1与椭圆相交于A,B两点,记△ABP三条边所在直线的斜率的乘积为t,求t的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设F1、F2分别是椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1的左、右焦点,P为椭圆上任一点,点M的坐标为(6,4),则PM+PF1的最大值为15.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.椭圆$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{4}$=1的焦点为F1、F2,点P为这个椭圆上的动点,当∠F1PF2为钝角时,点P横坐标的取值范围是(-$\frac{4\sqrt{6}}{3}$,$\frac{4\sqrt{6}}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.给定映射f:(x,y)→(2x+y,x-2y),在映射f下,(3,-1)的原像为(  )
A.(-1,3)B.(5,5)C.(3,-1)D.(1,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.点P(1,2,3)到原点的距离是(  )
A.$\sqrt{5}$B.$\sqrt{13}$C.$\sqrt{14}$D.2

查看答案和解析>>

同步练习册答案