(安徽文)设函数f(x)=-cos2x-4tsincos+4t2+t2-3t+4,x∈R,其中|t|≤1,将f(x)的最小值记为g(t).
(Ⅰ)求g(t)的表达式;
(Ⅱ)诗论g(t)在区间(-1,1)内的单调性并求极值.
科目:高中数学 来源: 题型:
(07年安徽卷文)(本小题满分14分)
设函数f(x)=-cos2x-4tsincos+4t2+t2-3t+4,x∈R,
其中≤1,将f(x)的最小值记为g(t).
(Ⅰ)求g(t)的表达式;
(Ⅱ)诗论g(t)在区间(-1,1)内的单调性并求极值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com