精英家教网 > 高中数学 > 题目详情
已知
(1)若函数在区间[1,+∞)上是增函数,求实数m的取值范围.
(2)若m≤2,求函数g(x)=f(x)-lnx在区间上的最小值.
【答案】分析:(1)根据已知f(x)在区间[1,+∞)上是增函数,说明其导数f′(x)在区间[1,+∞)上是大于0的,再利用常数分离法求出实数m的取值范围;
(2)把f(x)的解析式代入g(x),对g(x)进行求导,求出极值点,此时需要对m进行讨论,利用导数研究g(x)的最值问题;
解答:解:(1)由条件得到f(x)在区间[1,+∞)上是减函数且f(x)+2>0在区间[1,+∞)上恒成立,
f′(x)=1-≥0?m≤x2,在区间[1,+∞)上恒成立,得到m≤1,
f(x)+2>0在区间[1,+∞)上恒成立,得到m>-3,
所以实数m的取值范围是:(-3,1]…6分
(2)g(x)=x+-lnx,则g′(x)=1--=
(一)若m≤-时,g′(x)≥0,g(x)是[,2]上的增函数,
所以…(9分)
(二)若时,由g′(x)=0
得到
时,g′(x)≤0,x∈[x2,2]时,g′(x)≥0,
所以=;…(12分)
点评:本题考查了利用导数求闭区间上函数的最值,求函数在闭区间[a,b]上的最大值与最小值是通过比较函数在(a,b)内所有极值与端点函数f(a),f(b) 比较而得到的,此题还考查了分类讨论的思想,此题是一道中档题;
练习册系列答案
相关习题

科目:高中数学 来源:2010-2011年山东省高二下学期期中考试数学试卷(A) 题型:解答题

((本小题满分14分)

已知。 

(1)若函数为奇函数,求实数的值;

(2)若函数在区间上是增函数,求实数的值组成的集合A;

(3)设关于的方程的两个非零实根为,试问:是否存在实数,使得不等式对任意恒成立?若存在,求的取值范围;若不存在,请说明理由。

 

查看答案和解析>>

科目:高中数学 来源:河南省期末题 题型:解答题

已知  (mR) 
(1)若函数上单调递增,求实数的取值范围;
(2)当时,求函数上的最大,最小值。
(3)求的单调区间。

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江苏省盐城市东台市安丰中学高三(上)期中数学试卷(解析版) 题型:解答题

已知
(1)若函数f(x)在区间(a,a+1)上有极值,求实数a的取值范围;
(2)若关于x的方程f(x)=x2-2x+k有实数解,求实数k的取值范围;
(3)当n∈N*,n≥2时,求证:

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江苏省淮安市淮阴中学高三(下)综合练习数学试卷1(解析版) 题型:解答题

已知
(1)若函数f(x)在区间(a,a+1)上有极值,求实数a的取值范围;
(2)若关于x的方程f(x)=x2-2x+k有实数解,求实数k的取值范围;
(3)当n∈N*,n≥2时,求证:

查看答案和解析>>

同步练习册答案