精英家教网 > 高中数学 > 题目详情
18.已知{an}为公差不为零的等差数列,首项a1=a,{an}的部分项${a_{k_1}}$、${a_{k_2}}$、…、${a_{k_n}}$恰为等比数列,且k1=1,k2=5,k3=17.
(1)求数列{an}的通项公式an(用a表示);
(2)设数列{kn}的前n项和为Sn,求Sn

分析 (1)利用等差数列与等比数列的通项公式即可得出.
(2)利用等比数列的通项公式与求和公式即可得出.

解答 解:(1)设等差数列的公差为d,据题有:${a_5}^2={a_1}•{a_{17}}$,即(a+4d)2=a(a+16d),
∴16d2=8ad,∵d≠0,∴$d=\frac{a}{2}$,
从而${a_n}={a_1}+(n-1)d=\frac{a(n+1)}{2}$.
(2)设等比数列的公比为q,则$q=\frac{a_5}{a_1}=3$,故${a_{k_n}}=a•{3^{n-1}}$,
另一方面,${a_{k_n}}=\frac{a}{2}({k_n}+1)$,
所以$\frac{a}{2}({k_n}+1)=a•{3^{n-1}}$,∵a≠0,∴${k_n}=2•{3^{n-1}}-1$,∴${S_n}={3^n}-n-1$.

点评 本题考查了等差数列与等比数列的通项公式与求和公式、数列递推关系,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.如图,四边形ABCD是边长为2的正方形,DE⊥平面ABCD,AF∥DE,DE=2AF,BE与平面ABCD所成角为45°.
(Ⅰ)求证:AC⊥平面BDE;
(Ⅱ)求二面角F-BE-D的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.cos300°+sin210°的值为(  )
A.1B.$\frac{1}{2}$C.0D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.三棱锥的三组相对的棱(相对的棱是指三棱锥中成异面直线的一组棱)分别相等,且长分别为2,m,n,其中m2+n2=12,则该三棱锥体积的最大值为$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.点P是△ABC内一点,且$\overrightarrow{PA}+2\overrightarrow{PB}+3\overrightarrow{PC}=\overrightarrow 0$,则△ABP与△ABC的面积之比是(  )
A.1:5B.1:2C.2:5D.1:3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知f(x)=$\left\{\begin{array}{l}{{x}^{2}-4x+3,x≤0}\\{-{x}^{2}-2x+3,x>0}\end{array}$,不等式f(x+a)>f(2a-x)在[a,a+1]上恒成立,则实数a的取值范围是(  )
A.(-2,0)B.(-∞,0)C.(0,2)D.(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设集合A={-1,1,3},B={a+2,4},A∩B={3},则实数a=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数y=f(x)的图象为如图所示的折线ABC,则$\int_{-1}^1{[xf(x)]}dx$=(  )
A.$-\frac{1}{3}$B.$-\frac{1}{6}$C.0D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知平面内一动点M到点F(1,0)距离比到直线x=-3的距离小2.设动点M的轨迹为C.
(1)求曲线C的方程;
(2)若过点F的直线l与曲线C交于A、B两点,过点B作直线:x=-1的垂线,垂足为D,设A(x1,y1),B(x2,y2).
求证:①x1•x2=1,y1•y2=-4;      ②A、O、D三点共线 (O为坐标原点).

查看答案和解析>>

同步练习册答案