精英家教网 > 高中数学 > 题目详情
若f(x)具有性质:①f(x)为偶函数,②对任意x∈R,都有f(
π
4
-x)=f(
π
4
+x),则f(x)的解析式可以是
 
.(只写一个即可)
分析:题目中条件:“若f(x)具有性质:①f(x)为偶函数,”说明有f(-x)=f(x);“②对任意x∈R,都有f(
π
4
-x)=f(
π
4
+x)”说明有:f(
π
2
+x)=f(x),是周期函数.
解答:解:∵若f(x)具有性质:①f(x)为偶函数,
∴说明有f(-x)=f(x);
∵②对任意x∈R,都有f(
π
4
-x)=f(
π
4
+x)
∴说明有:f(
π
2
+x)=f(x),是周期函数.
我们从三角函数中寻找即得:f(x)=a或f(x)=cos4x或f(x)=|sin2x|等.
故填:f(x)=a或f(x)=cos4x或f(x)=|sin2x|等.
点评:本题主考查抽象函数的周期性、对称性以及偶函数,抽象函数是相对于给出具体解析式的函数来说的,它虽然没有具体的表达式,但是有一定的对应法则,满足一定的性质,这种对应法则及函数的相应的性质是解决问题的关键.抽象函数的抽象性赋予它丰富的内涵和多变的思维价值,可以考查类比猜测,合情推理的探究能力和创新精神.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)的定义域为[0,1],且f(x)的图象连续不间断.若函数f(x)满足:对于给定的m(m∈R且0<m<1),存在x0∈[0,1-m],使得f(x0)=f(x0+m),则称f(x)具有性质P(m).
(Ⅰ)已知函数f(x)=(x-
1
2
2,x∈[0,1],判断f(x)是否具有性质P(
1
3
),并说明理由;
(Ⅱ)已知函数 f(x)=
-4x+1,0≤x≤
1
4
4x-1,
1
4
<x<
3
4
-4x+5,
3
4
≤x≤1
,若f(x)具有性质P(m),求m的最大值;
(Ⅲ)若函数f(x)的定义域为[0,1],且f(x)的图象连续不间断,又满足f(0)=f(1),求证:对任意k∈N*且k≥2,函数f(x)具有性质P(
1
k
).

查看答案和解析>>

科目:高中数学 来源:2012-2013学年广东省汕头四中高一(上)期末数学试卷(解析版) 题型:填空题

若f(x)具有性质:①f(x)为偶函数,②对任意x∈R,都有f(-x)=f(+x),则f(x)的解析式可以是    .(只写一个即可)

查看答案和解析>>

科目:高中数学 来源:《第1章 三角函数》2013年单元测试卷(3)(解析版) 题型:填空题

若f(x)具有性质:①f(x)为偶函数,②对任意x∈R,都有f(-x)=f(+x),则f(x)的解析式可以是    .(只写一个即可)

查看答案和解析>>

科目:高中数学 来源:《第1章 三角函数》2013年单元测试卷1(北京宏志中学)(解析版) 题型:填空题

若f(x)具有性质:①f(x)为偶函数,②对任意x∈R,都有f(-x)=f(+x),则f(x)的解析式可以是    .(只写一个即可)

查看答案和解析>>

同步练习册答案