精英家教网 > 高中数学 > 题目详情
三题中任选两题作答
(1)(2011年江苏高考)已知矩阵,向量,求向量α,使得A2α=β
(2)(2011年山西六校模考)以直角坐标系的原点O为极点,x轴的正半轴为极轴,已知点P的直角坐标为(1,-5),点M的极坐标为,若直线l过点P,且倾斜角为,圆C以M为圆心、4为半径.
①求直线l的参数方程和圆C的极坐标方程;  ②试判定直线l和圆C的位置关系.
(3)若正数a,b,c满足a+b+c=1,求的最小值.
【答案】分析:(1)设向量=,由A2α=β,利用矩阵的运算法则,用待定系数法可得x 和 y 的值,从而求得向量
(2)①根据题意直接求直线l的参数方程和圆C的极坐标方程.
②先化直线l的参数方程为普通方程,求出圆心坐标,用圆心的直线距离和半径比较可知位置关系.
(3)利用柯西不等式,即可求得的最小值.
解答:解:(1)、A2==,设向量=,由 A2= 可得
=
,解得 x=-1,y=2,
∴向量=
(2)①直线l的参数方程为,(t为参数)
圆C的极坐标方程为ρ=8sinθ.(6分)
②因为M(4,)对应的直角坐标为(0,4)
直线l化为普通方程为x-y-5-=0
圆心到l的距离d==>4,
所以直线l与圆C相离.(10分)
(3)∵正数a,b,c满足a+b+c=1,
∴()[(3a+2)+(3b+2)+(3c+2)]≥(1+1+1)2
≥1
当且仅当a=b=c=时,取等号
∴当a=b=c=时,的最小值为1.
点评:本题考查圆与圆的位置关系,参数方程与普通方程的互化,矩阵的运算法则,绝对值不等式的解法.第(3)小题考查求最小值,解题的关键是利用柯西不等式进行求解,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网三选一题(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)
A(几何证明选讲)如图,⊙O的两条弦AB,CD相交于圆内一点P,若PA=PB,PC=2,PD=8,OP=4,则该圆的半径长为
 

B(坐标系与参数方程)曲线C1
x=1+cosθ 
y=sinθ 
(θ为参数)
上的点到曲线C2
x=-2
2
+
1
2
t
y=1-
1
2
t
(t为参数)
上的点的最短离为
 

C(不等式选讲)不等式|2x-1|-|x-2|<0的解集为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

三题中任选两题作答
(1)(2011年江苏高考)已知矩阵A=
11
21
,向量β=
1
2
,求向量α,使得A2α=β
(2)(2011年山西六校模考)以直角坐标系的原点O为极点,x轴的正半轴为极轴,已知点P的直角坐标为(1,-5),点M的极坐标为(4,
π
2
)
,若直线l过点P,且倾斜角为
π
3
,圆C以M为圆心、4为半径.
①求直线l的参数方程和圆C的极坐标方程;  ②试判定直线l和圆C的位置关系.
(3)若正数a,b,c满足a+b+c=1,求
1
3a+2
+
1
3b+2
+
1
3c+2
的最小值.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年福建省高三第二次质检理科数学复习卷(一) 题型:解答题

三题中任选两题作答

(1)(2011年江苏高考)已知矩阵,向量,求向量,使得

 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

三题中任选两题作答
(1)(2011年江苏高考)已知矩阵A=
11
21
,向量β=
1
2
,求向量α,使得A2α=β
(2)(2011年山西六校模考)以直角坐标系的原点O为极点,x轴的正半轴为极轴,已知点P的直角坐标为(1,-5),点M的极坐标为(4,
π
2
)
,若直线l过点P,且倾斜角为
π
3
,圆C以M为圆心、4为半径.
①求直线l的参数方程和圆C的极坐标方程;  ②试判定直线l和圆C的位置关系.
(3)若正数a,b,c满足a+b+c=1,求
1
3a+2
+
1
3b+2
+
1
3c+2
的最小值.

查看答案和解析>>

同步练习册答案