精英家教网 > 高中数学 > 题目详情

已知如图,△ABC中,试证明三角形面积S=

答案:
解析:


提示:

由三角形的面积公式S=absinC知,关键是求sinC,利用数量积求出cosC即可.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知三棱锥P-ABC中,PA⊥平面ABC,AN⊥BC于N,D是AB的中点,且PA=1,AN=BN=CN=
2

(1)求证:PB⊥AC;
(2)求异面直线CD与PB所成角的大小;
(3)求点A到平面PBC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:如图,△ABC中,AB=AC,∠BAC=90°,AE=
1
3
AC,BD=
1
3
AB,点F在BC上,且CF=
1
3
BC.求证:
(1)EF⊥BC;
(2)∠ADE=∠EBC.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•河西区二模)如图,已知三棱锥P-ABC中,底面△ABC是边长为4
2
的等边三角形,又PA=PB=2
6
PC=2
10

(I)证明平面PAB⊥平面ABC;
(Ⅱ)求直线PB与平面PAC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•河北区二模)已知如图(1),梯形ABCD中,AD∥BC,∠ABC=∠BAD=
π2
,AB=BC=2AD=4,E、F分别是AB、CD上的动点,且EF∥BC,设AE=x(0<x<4).沿EF将梯形ABCD翻折,使平面AEFD⊥平面EBCF,如图(2).
(Ⅰ)求证:平面ABE⊥平面ABCD;
(Ⅱ)若以B、C、D、F为顶点的三棱锥的体积记为f(x),求f(x)的最大值;
(Ⅲ)当f(x)取得最大值时,求异面直线CD和BE所成角的余弦值.

查看答案和解析>>

同步练习册答案