精英家教网 > 高中数学 > 题目详情
14.已知指数函数y=g(x)满足:g($\frac{1}{2}$)=$\sqrt{2}$,定义域为R的函数f(x)=$\frac{1-g(x)}{m+2g(x)}$是奇函数.
(1)确定y=f(x)和y=g(x)的解析式;
(2)判断函数f(x)的单调性,并用定义证明;
(3)解关于t的不等式f(t2-2t)+f(2t2-1)<0.

分析 (1)由g($\frac{1}{2}$)=$\sqrt{2}$,可得y=g(x)的解析式;由函数f(x)=$\frac{1-g(x)}{m+2g(x)}$是奇函数,可得m值,进而可得y=f(x)解析式;
(2)函数f(x)在R为减函数,作差判断可得绪论;
(3)f(x)在(-∞,+∞)上为减函数.又因为f(x)是奇函数,所以不等式f(t2-2t)+f(2t2-1)<0等价于t2-2t>-2t2+1,解得答案.

解答 解:(1)设g(x)=ax
∴g($\frac{1}{2}$)=${a}^{\frac{1}{2}}$=$\sqrt{2}$,
∴a=2,
∴g(x)=2x
∴f(x)=$\frac{1-{2}^{x}}{m+2•{2}^{x}}$,
∵f(x)是奇函数,
∴f(-x)=-f(x),
即$\frac{1-{2}^{-x}}{m+2•{2}^{-x}}$=$\frac{{2}^{x}-1}{m{2}^{x}+2}$=-$\frac{1-{2}^{x}}{m+2•{2}^{x}}$,
解得m=2,
∴f(x)=$\frac{1-{2}^{x}}{2+2•{2}^{x}}$    (4分)
(2)函数f(x)在R为减函数,理由如下:
任取x1,x2∈R,且x1<x2
则$1+{2}^{{x}_{1}}>0$,$1+{2}^{{x}_{2}}>0$,${{2}^{{x}_{2}}-2}^{{x}_{1}}>0$
∴f(x1)-f(x2)=$\frac{1-{2}^{{x}_{1}}}{2+2•{2}^{{x}_{1}}}$-$\frac{1-{2}^{{x}_{2}}}{2+2•{2}^{{x}_{2}}}$=$\frac{{2}^{{x}_{2}}-{2}^{{x}_{1}}}{(1+{2}^{{x}_{1}})(1+{2}^{{x}_{2}})}$>0,
即f(x1)>f(x2)…(6分)
故函数f(x)在R为减函数.  (8分)
(3)f(x)在(-∞,+∞)上为减函数.又因为f(x)是奇函数,
所以不等式f(t2-2t)+f(2t2-1)<0等价于f(t2-2t)<-f(2t2-1)=f(-2t2+1).
因为f(x)是减函数,由上式推得t2-2t>-2t2+1,即3t2-2t-1>0,
解不等式可得{t|t>1或$\left.{t<-\frac{1}{3}}\right\}$.(12分)

点评 本题考查的知识点是函数的奇偶性,函数的单调性,转化思想,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知命题p:$\frac{1}{x-1}<1$,q:x2-(a+1)x+a>0,若p是q的充分不必要条件,则实数a的取值范围是(  )
A.(-∞,2)B.[1,2]C.(1,2]D.[1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.如图所示几何体的三视图,则该几何体的表面积为16+2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.点P(-1,2)到直线3x-4y+12=0的距离为(  )
A.5B.$\frac{1}{5}$C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知数列{an}各项均为正数,其前n项和为Sn,且满足$4{S_n}={({a_n}+1)^2}$.
(1)求{an}的通项公式;
(2)设${b_n}=\frac{1}{{{a_n}•{a_{n+1}}}}$,数列{bn}的前n项和为Tn,求Tn的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,三棱锥P-ABC中,BC⊥平面PAB,PA=PB=AB=6,BC=9,点M,N分别为PB,BC的中点.
(1)求证:AM⊥平面PBC;
(2)E是线段AC上的点,且AM∥平面PNE.
①确定点E的位置;②求直线PE与平面PAB所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=x2+4[sin(θ+$\frac{π}{3}$)]x-2,θ∈[0,2π).
(1)若函数f(x)为偶函数,求tanθ的值;
(2)若f(x)在[-$\sqrt{3}$,1]上是单调函数,求θ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知命题,若m>$\frac{1}{4}$,则mx2-x+1=0无实根,写出该命题的逆命题、否命题、逆否命题,并判断它们的真假.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.从含有两件正品a1,a2和一件次品b的3件产品中每次任取一件,每次取出后不放回,连续取两次.
(1)写出基本事件空间;
(2)求取出的两件产品中恰有一件次品的概率.

查看答案和解析>>

同步练习册答案