精英家教网 > 高中数学 > 题目详情
14.已知数列{an}的通项公式为an=n(n+4)($\frac{2}{3}$)n,若数列最大项为ak,则k=4.

分析 根据题意,得出$\left\{\begin{array}{l}{{a}_{k}{≥a}_{k+1}}\\{{a}_{k}{≥a}_{k-1}}\end{array}\right.$,代人通项公式并化简,求出符合题意的k的值.

解答 解:数列{an}的通项公式为an=n(n+4)($\frac{2}{3}$)n,且最大项为ak
则$\left\{\begin{array}{l}{{a}_{k}{≥a}_{k+1}}\\{{a}_{k}{≥a}_{k-1}}\end{array}\right.$,
即$\left\{\begin{array}{l}{k(k+4{)(\frac{2}{3})}^{k}≥(k+1)(k+5{)(\frac{2}{3})}^{k+1}}\\{k(k+4{)(\frac{2}{3})}^{k}≥(k-1)(k+3{)(\frac{2}{3})}^{k-1}}\end{array}\right.$,
化简$\left\{\begin{array}{l}{{k}^{2}≥10}\\{{k}^{2}-2k-9≤0}\end{array}\right.$,
解得$\left\{\begin{array}{l}{k≤-\sqrt{10}或k≥\sqrt{10}}\\{1-\sqrt{10}≤k≤1+\sqrt{10}}\end{array}\right.$,
即$\sqrt{10}$≤k≤1+$\sqrt{10}$;
又k∈N*
∴k=4.
故答案为:4.

点评 本题考查了数列的通项公式与应用问题,也考查了不等式组的解法与应用问题,解题的关键是把题目转化为等价的不等式组,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知奇函数y=f(x)的图象关于直线x=-2对称,且f(m)=3,则f(m-4)的值为(  )
A.3B.0C.-3D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在等差数列{an}中,首项a1=3,公差d=2,若某学生对其中连续10项迸行求和,在遗漏掉一项的情况下,求得余下9项的和为185,则此连续10项的和为200.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知f(x)=|x2-k|在[0,2]上的最大值为2,则常数k等于2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=$\sqrt{3}sin\frac{x}{4}cos\frac{x}{4}+{cos}^{2}\frac{x}{4}$.
(Ⅰ)若f(a)=$\frac{3}{2}$,求tan(a+$\frac{π}{3}$)的值;
(Ⅱ)在△ABC中,角A,B,C的对边分别是a,b,c,且满足(2a-c)cosB=bcosC,若f(A)=$\frac{1+\sqrt{3}}{2}$,试证明:a2+b2+c2=ab+bc+ca.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若集合A={(x,y)|y=-$\sqrt{9-{x}^{2}}$},B={(x,y)|x+y+m=0},且A∩B≠∅,则实数m的取值范围[-3,3$\sqrt{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知f(sinx)=sin($\frac{π}{2}$+2x),则f($\frac{1}{4}$)=(  )
A.$\frac{7}{8}$B.-$\frac{7}{8}$C.-$\frac{3}{4}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知指数函数y=ax(a>0且a≠1)的图象过点(2,9),则a=3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=x2-ax+a.设p:方程f(x)=0有实数根;q:函数f(x)在区间[1,2]上是增函数.若p或q为真命题,p且q为假命题,求实数a的取值范围.

查看答案和解析>>

同步练习册答案