精英家教网 > 高中数学 > 题目详情
6.f(x)=$\left\{\begin{array}{l}{{x}^{3}+5,0≤x≤3}\\{x+1,3<x≤6}\end{array}\right.$,求f(1)+f(4)的值.

分析 直接利用分段函数求解函数的值即可.

解答 解:f(x)=$\left\{\begin{array}{l}{{x}^{3}+5,0≤x≤3}\\{x+1,3<x≤6}\end{array}\right.$,
f(1)+f(4)=1+5+4+1=11.
故答案为:11.

点评 本题考查分段函数的应用,函数值的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.设f(x)是定义在R上的函数,且满足f(x+2)=f(x+1)-f(x),如果f(1)=lg$\frac{3}{2}$,f(2)=lg15,则f(2016)=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设函数f(x)=logax,若不等式|f(x)|>1对任意x∈[2,+∞)恒成立,则实数a的取值范围是(  )
A.(0,$\frac{1}{2}$)∪(1,2)B.(0,$\frac{1}{2}$)∪(2,+∞)C.($\frac{1}{2}$,1)∪(1,2)D.($\frac{1}{2}$,1)∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.求数列2-$\frac{1}{3}$,4+$\frac{1}{9}$,6-$\frac{1}{27}$,8+$\frac{1}{81}$,…,2n+$\frac{1}{(-3)^{n}}$的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.当x∈(2,+∞)时,函数y=lg(ax-1)有意义.求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知a>0,且a≠1,试讨论函数f(x)=a${\;}^{{x}^{2}+6x+17}$的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若sin($\frac{π}{2}$+θ)<0,且cos($\frac{π}{2}-θ$)>0,则θ是(  )
A.第一象限角B.第二象限角C.第三象限角D.第四象限角

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若执行如图的程序框图,则输出的n的值是(  )
A.9B.10C.11D.12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若复数z=$\frac{a-i}{1-i}$(a∈R,i是虚数单位)是纯虚数,则复数3-z的共轭复数是(  )
A.3+iB.3-iC.3+2iD.2-i

查看答案和解析>>

同步练习册答案