精英家教网 > 高中数学 > 题目详情
(2012•青岛一模)已知等差数列{an}的公差大于零,且a2,a4是方程x2-18x+65=0的两个根;各项均为正数的等比数列{bn}的前n项和为Sn,且满足b3=a3,S3=13.
(1)求数列{an}、{bn}的通项公式;
(2)若数列{cn}满足cn=
an ,n≤5
b ,n>5
,求数列{cn}的前n项和Tn
分析:(1)设{an}的公差为d,{bn}的公比为q,由题意及a2<a4,可求a2,a4,利用等差数列的通项公式可求a1,d,可求an,然后由等比数列的通项公式及求和可求b1,q,可求
(2)当n≤5时,Tn=a1+a2+…+an,利用等差数列的求和公式可求,当n>5时,Tn=T5+(b6+b7+…+bn),利用分组求和及等差、等比数列的求和公式可求
解答:解:(1)设{an}的公差为d,{bn}的公比为q,则
由x2-18x+65=0解得x=5或x=13
因为d>0,所以a2<a4,则a2=5,a4=13
a1+d=5
a1+3d=13
,解得a1=1,d=4
所以an=1+4(n-1)=4n-3…(4分)
因为
b3=b1q2=9
b1+b1q+b1q2=13
,因为q>0,解得b1=1,q=3
所以bn=3n-1…(7分)
(2)当n≤5时,Tn=a1+a2+…+an
=n+
n(n-1)
2
×4
=2n2-n…(9分)
当n>5时,Tn=T5+(b6+b7+…+bn
=(2×52-5)+
33(1-3n-5)
1-3

=
3n-153
2

所以Tn=
2n2-n,n≤5
3n-153
2
,n>5
…(14分)
点评:本小题主要考查等差数列、等比数列的定义.运用基本量的思想求出数列的通项公式.考查分段函数、数列的求和的基本方法.运算求解能力,考查化归与转化思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•青岛一模)已知a>b,函数f(x)=(x-a)(x-b)的图象如图所示,则函数g(x)=loga(x+b)的图象可能为
(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•青岛一模)已知实数集R,集合M={x|0<x<2},集合N={x|y=
1
x-1
}
,则M∩(?RN)(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•青岛一模)已知锐角△ABC中内角A、B、C的对边分别为a、b、c,且a2+b2=c2+ab.
(Ⅰ)求角C的值;
(Ⅱ)设函数f(x)=sin(ωx-
π6
)-cosωx(ω>0),且f(x)图象上相邻两最高点间的距离为π,求f(A)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•青岛一模)已知点M在椭圆D:
x2
a2
+
y2
b2
=1(a>b>0)上,以M为圆心的圆与x轴相切于椭圆的右焦点,若圆M与y轴相交于A,B两点,且△ABM是边长为
2
6
3
的正三角形.
(Ⅰ)求椭圆D的方程;
(Ⅱ)设P是椭圆D上的一点,过点P的直线l交x轴于点F(-1,0),交y轴于点Q,若
QP
=2
PF
,求直线l的斜率;
(Ⅲ)过点G(0,-2)作直线GK与椭圆N:
3x2
a2
+
4y2
b2
=1
左半部分交于H,K两点,又过椭圆N的右焦点F1做平行于HK的直线交椭圆N于R,S两点,试判断满足|GH|•|GK|=3|RF1|•|F1S|的直线GK是否存在?请说明理由.

查看答案和解析>>

同步练习册答案