精英家教网 > 高中数学 > 题目详情

【题目】已知函数的图象与轴相切,且切点在轴的正半轴上.

(1)若函数上的极小值不大于,求的取值范围;

(2)设),证明: 上的最小值为定值.

【答案】(1);(2)

【解析】试题分析:(1)由图像与x轴相切,可知,可求得,又x>0,所以f(1)=0.可求得a=2.所以 ,要有极小值所以,所以处取得极小值,即且要满足极值点在定义域(-3,2)上,即-3<<2,由以上不等式组,可解得m范围。

(2)由题得可知: ,(

.只需考虑部分的正负性,所以设 ,所上递增,即,所以函数(0,1)递减,在递增,所以

试题解析;(1)∵,∴令,由题意可得,∴.

,即 无极值.当,即时,令

,∴处取得极小值.

,即时, 上无极小值,

故当时, 上有极小值,

且极小值为,即.

,∴,∴.

又∵,∴.

(2)证明:

.

,∴,又,∴,∴,∴上递增,

.

;令,∴为定值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,正方形ABCD和四边形ACEF所在的平面互相垂直.EF∥AC,AB= ,CE=EF=1. (Ⅰ)求证:AF∥平面BDE;
(Ⅱ)求证:CF⊥平面BDE.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的图象与轴相切,且切点在轴的正半轴上.

(1)若函数上的极小值不大于,求的取值范围;

(2)设,证明: 上的最小值为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正四棱锥中,已知异面直线所成的角为,给出下面三个命题:

:若,则此四棱锥的侧面积为

:若分别为的中点,则平面

:若都在球的表面上,则球的表面积是四边形面积的倍.

在下列命题中,为真命题的是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,李先生家住H小区,他工作在C科技园区,从家开车到公司上班路上有L1、L2两条路线,L1路线上有A1、A2、A3三个路口,各路口遇到红灯的概率均为 ;L2路线上有B1、B2两个路口,各路口遇到红灯的概率依次为

(1)若走L1路线,求最多遇到1次红灯的概率;
(2)若走L2路线,求遇到红灯次数X的数学期望;
(3)按照“平均遇到红灯次数最少”的要求,请你帮助李先生从上述两条路线中选择一条最好的上班路线,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,直线的参数方程为,其中为参数, ,再以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为,其中 ,直线与曲线交于两点.

(1)求的值;

(2)已知点,且,求直线的普通方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD底面是正方形,PA⊥底面ABCD,E,F分别为PA,PD中点.

(1)求证:EF∥面PBC
(2)求证:平面PBC⊥平面PAB.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C与两平行直线 x﹣y﹣8=0和x﹣y+4=0相切,圆心在直线2x+y﹣10=0上.
(1)求圆C的方程.
(2)过原点O做一条直线,交圆C于M,N两点,求OM*ON的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在长方形中,设一条对角线与其一顶点出发的两条边所成的角分别是α,β,则有cos2α+cos2β=1类比到空间,在长方体中,一条对角线与从其一顶点出发的三个面所成的角分别为α,β,γ,则有cos2α+cos2β+cos2γ=

查看答案和解析>>

同步练习册答案