精英家教网 > 高中数学 > 题目详情
在整数集Z中,称被5除所得的余数为k的所有整数组成一个“k类”,记为[k],即[k]={x|x=5n+k,n∈Z},k=0,1,2,3,4.现给出如下四个结论:
①2011∈[1];
②-4∈[4];
③Z=[0]∪[1]∪[2]∪[3]∪[4];
④设a,b∈Z,则a,b∈[k]?a-b∈[0].
其中,正确结论的序号是
①③④
①③④
分析:原题无答案对各个选项进行分析:①2011÷5=402…1;②-4÷5=-1…1,③整数集中的数被5除的数可以且只可以分成五类,故Z=[0]∪[1]∪[2]∪[3]∪[4];④从正反两个方面考虑即可得答案.
解答:解:①∵2011÷5=402…1,∴2011∈[1],故①正确;
②∵-4=5×(-1)+4,∴-4∉[4],故②错误;
③因为整数集中的数被5除的数可以且只可以分成五类,故Z=[0]∪[1]∪[2]∪[3]∪[4],故③正确;
④∵整数a,b属于同一“类”,∴整数a,b被5除的余数相同,从而a-b被5除的余数为0,
反之也成立,故“整数a,b属于同一“类”的充要条件是“a-b∈[0]”.故④正确.
故答案为:①③④
点评:本题为同余的性质的考查,具有一定的创新,关键是对题中“类”的题解,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源:2012-2013学年北京市重点中学高三(上)10月月考数学试卷(文科)(解析版) 题型:填空题

在整数集Z中,称被5除所得的余数为k的所有整数组成一个“k类”,记为[k],即[k]={x|x=5n+k,n∈Z},k=0,1,2,3,4.现给出如下四个结论:
①2011∈[1];
②-4∈[4];
③Z=[0]∪[1]∪[2]∪[3]∪[4];
④设a,b∈Z,则a,b∈[k]?a-b∈[0].
其中,正确结论的序号是   

查看答案和解析>>

同步练习册答案