解:过点O作a1∥a,b1∥b,则相交直线a1、b1确定一平面α.a1与b1夹角为50°或130°,
设直线OA与a1、b1均为θ角,作AB⊥面α于点B,BC⊥a1于点C,BD⊥b1于点D,记∠AOB=θ1,∠BOC=θ2(θ2=25°或65°),
则有cosθ=cosθ1·cosθ2.
因为0°≤θ1≤90°,
所以0≤cosθ≤cosθ2.
当θ2=25°时,由0≤cosθ≤cos25°,得25°≤θ≤90°;
当θ2=65°时,由0≤cosθ≤cos65°,得65°≤θ≤90°.
故当θ<25°时,直线l不存在;当θ=25°时,直线l有且仅有1条;
当25°<θ<65°时,直线l有且仅有2条;
当θ=65°时,直线l有且仅有3条;
当65°<θ<90°时,直线l有且仅有4条;
当θ=90°时,直线l有且仅有1条.
讲评:异面直线所成的角就是选点、平移后的平面角.上述解答首先将问题转化为:求过点O与a1、b1均成θ角的直线的条数,进而通过讨论θ的范围去确定直线l的条数.
科目:高中数学 来源:2012-2013学年河南省洛阳市偃师高中高一(上)第四周周练数学试卷(11.28)(解析版) 题型:解答题
查看答案和解析>>
科目:高中数学 来源:2006年高考第一轮复习数学:9.1 平面、空间两条直线(解析版) 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com