【题目】Fibonacci数列又称黄金分割数列,因为当n趋向于无穷大时,其相邻两项中的前项与后项的比值越来越接近黄金分割数
.已知Fibonacci数列的递推关系式为
.
(1)证明:Fibonacci数列中任意相邻三项不可能成等比数列;
(2)Fibonacci数列{an}的偶数项依次构成一个新数列,记为{bn},证明:{bn+1-H2·bn}为等比数列.
【答案】(1)详见解析;(2)详见解析.
【解析】
(1)利用反证法,假设存在
,
,
三项成等比数列,则
,进而由已知关系证得
是无理数,这与其递推公式中反应的为有理数矛盾,得证;
(2)由题表示
,进而由已知
的递推关系表示出
的递推公式,再构造等比数列
,进而由一一对应关系计算出对应参量,最后由等比数列定义得证.
(1)证明:(反证法)假设存在
,
,
三项成等比数列,则
,
所以
,所以
,解得
,
由条件可知Fibonacci数列的所有项均大于0,所以
,
又Fibonacci数列的所有项均为整数(由递推公式),所以
应该为有理数,
这与
(无理数)矛盾(其相邻两项中的前项与后项的比值越来越接近黄金分割数,而不是恰好相等),
所以假设不成立,故原命题成立.
(2)证明:由条件得
,
,
所以
,
即
,
设
,则
或![]()
所以
或![]()
所以
,所以
为等比数列,公比为
.
科目:高中数学 来源: 题型:
【题目】已知函数
的最小正周期为4
,其图象关于直线
对称,给出下面四个结论:
①函数
在区间
上先增后减;②将函数
的图象向右平移
个单位后得到的图象关于原点对称;③点
是函数
图象的一个对称中心;④函数
在
上的最大值为1.其中正确的是( )
A. ①② B. ③④ C. ①③ D. ②④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的左、右焦点分别为
,
,过点
的直线与椭圆
交于
两点,延长
交椭圆
于点
,
的周长为8.
![]()
(1)求
的离心率及方程;
(2)试问:是否存在定点
,使得
为定值?若存在,求
;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】比较甲、乙两名学生的数学学科素养的各项能力指标值(满分为5分,分值高者为优),绘制了如图所示的六维能力雷达图,例如图中甲的数学抽象指标值为4,乙的数学抽象指标值为5,则下面叙述正确的是( )
![]()
A.甲的逻辑推理能力指标值优于乙的逻辑推理能力指标值
B.甲的数学建模能力指标值优于乙的直观想象能力指标值
C.甲的六维能力指标值整体水平优于乙的六维能力指标值整体水平
D.甲的数学运算能力指标值优于甲的直观想象能力指标值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的左、右焦点分别为
,过点
的直线与椭圆
交于
两点,
的周长为8,直线
被椭圆
截得的线段长为
.
(1)求椭圆
的方程;
(2)设
是椭圆上两动点,线段
的中点为
,
的斜率分别为
(
为坐标原点),且
,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线l:mx﹣y=1,若直线l与直线x+m(m﹣1)y=2垂直,则m的值为_____,动直线l:mx﹣y=1被圆C:x2﹣2x+y2﹣8=0截得的最短弦长为_____.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
的左、右焦点分别为
,
,椭圆
的长轴长与焦距之比为
,过
的直线
与
交于
,
两点.
(1)当
的斜率为
时,求
的面积;
(2)当线段
的垂直平分线在
轴上的截距最小时,求直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆C经过点A(﹣1,3),B(3,3)两点,且圆心C在直线x﹣y+1=0上.
(1)求圆C的方程;
(2)求经过圆上一点A(﹣1,3)的切线方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com