精英家教网 > 高中数学 > 题目详情

已知f(x)=数学公式是奇函数.
(1)求a的值;
(2)求f(x)的反函 数 f-1(x),判断f-1(x)的奇偶性,并给予证明;
(3)若函数y=F(x)是以2为周期的奇函数,当x∈(-1,0)时,F(x)=f-1(x),求x∈(2,3)时F(x)的表达式.

解:(1)∵f(x)=是奇函数,由f(0)=,得a=-1;
(2)由y=f(x)=



∴f-1(x)在(-1,1)上是奇函数;
(3)因为当-1<x<1时,F(x)=f-1(x)
∴当2<x<3时,-3<-x<-2?-3+2<2-x<0?-1<2-x<0

又∵F(x)是以2为周期的奇函数,
∴F(2-x)=F(-x)=-F(x)

分析:(1)函数f(x)是定义在实数集上的奇函数,由f(0)=0求解a的值;
(2)由函数解析式利用指数式和对数式的互化求解x,把x和y互换后得到原函数的反函数,然后利用就行的定义证明奇偶性;
(3)由2<x<3两边同时乘以-1,再加2后求出2-x的范围,代入F(x)=f-1(x),再利用周期函数的性质得到x∈(2,3)时F(x)的表达式.
点评:本题考查了函数的性质,考查了函数的反函数的求法,训练了指数式和对数式的互化,通过对定义域的变化求解函数解析式是解答该题的关键,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)是定义在[-1,1]上的奇函数. 当a,b∈[-1,1],且a+b≠0时,有
f(a)+f(b)a+b
>0
成立.
(Ⅰ)判断函f(x)的单调性,并证明;
(Ⅱ)若f(1)=1,且f(x)≤m2-2bm+1对所有x∈[-1,1],b∈[-1,1]恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在R上的不恒为零的函数,且对于任意实数a,b都有f(a•b)=af(b)+bf(a),则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)(x∈R)的一段图象如图所示,f′(x)是函f(x)(数的导函数,且y=f(x+1)是奇函数,给出以下结论:
①f(1-x)+f(1+x)=0;
②f′(x)(x-1)≥0;
③f(x)(x-1)≥0;
④f(x)+f(-x)=0
其中一定正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•宝山区二模)已知f(x)=
10x+a10x+1
是奇函数.
(1)求a的值;
(2)求f(x)的反函 数 f-1(x),判断f-1(x)的奇偶性,并给予证明;
(3)若函数y=F(x)是以2为周期的奇函数,当x∈(-1,0)时,F(x)=f-1(x),求x∈(2,3)时F(x)的表达式.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年陕西师大附中高一(上)期中数学试卷(解析版) 题型:解答题

已知f(x)是定义在[-1,1]上的奇函数. 当a,b∈[-1,1],且a+b≠0时,有成立.
(Ⅰ)判断函f(x)的单调性,并证明;
(Ⅱ)若f(1)=1,且f(x)≤m2-2bm+1对所有x∈[-1,1],b∈[-1,1]恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案