精英家教网 > 高中数学 > 题目详情
已知点F是双曲线的右焦点,点C是该双曲线的左顶点,过F且垂直于x轴的直线与双曲线交于A、B两点,若△ABC是锐角三角形,则此双曲线离心率的取值范围是( )
A.(1,2)
B.(1,+∞)
C.
D.
【答案】分析:利用双曲线的对称性及锐角三角形∠ACF<45°得到AF<CF,求出A的坐标;求出AF,CF得到关于a,b,c的不等式,求出离心率的范围.
解答:解:∵△ABC是锐角三角形
∴∠ACB为锐角
∵双曲线关于x轴对称,且直线AB垂直x轴
∴∠ACF=∠BCF<45°
∴AF<CF
∵F为右焦点,设其坐标为(c,0)
所以A(
所以AF=,CF=a+c
即c2-ac-2a2<0
解得
双曲线的离心率的范围是(1,2)
故选A.
点评:本题考查双曲线的对称性、考查双曲线的三参数关系:c2=a2+b2、考查双曲线的离心率问题就是研究三参数a,b,c的关系.
练习册系列答案
相关习题

科目:高中数学 来源:2012-2013学年湖北省武汉市部分重点中学联考高二(上)期中数学试卷(理科)(解析版) 题型:选择题

已知点F是双曲线的右焦点,若过点F且倾斜角为60°的直线与双曲线的右支有两个交点,则该双曲线的离心率e的取值范围是( )
A.(1,2)
B.(1,3)
C.(1,1+
D.(2,1+

查看答案和解析>>

科目:高中数学 来源:2011-2012学年浙江省杭州市学军中学高二(上)期末数学试卷(文科)(解析版) 题型:选择题

已知点F是双曲线的右焦点,点C是该双曲线的左顶点,过F且垂直于x轴的直线与双曲线交于A、B两点,若△ABC是锐角三角形,则此双曲线离心率的取值范围是( )
A.(1,2)
B.(1,+∞)
C.
D.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年浙江省温州市五校联考高三(上)期末数学试卷(文科)(解析版) 题型:选择题

已知点F是双曲线的右焦点,点C是该双曲线的左顶点,过F且垂直于x轴的直线与双曲线交于A、B两点,若△ABC是锐角三角形,则此双曲线离心率的取值范围是( )
A.(1,2)
B.(1,+∞)
C.
D.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年浙江省温州市十校联合体高三(上)期末数学试卷(理科)(解析版) 题型:选择题

已知点F是双曲线的右焦点,点C是该双曲线的左顶点,过F且垂直于x轴的直线与双曲线交于A、B两点,若△ABC是锐角三角形,则此双曲线离心率的取值范围是( )
A.(1,2)
B.(1,+∞)
C.
D.

查看答案和解析>>

同步练习册答案