(本小题满分13分)
已知三次函数的导函数,,,为实数。
(1)若曲线在点(,)处切线的斜率为12,求的值;
(2)若在区间上的最小值、最大值分别为和1,且,求函数的解析式。
(Ⅰ) ;(Ⅱ) = 。
【解析】本试题主要是考查了导数在研究函数中的运用。求解曲线的切线方程和函数的极值以及函数的最值的综合运用。
(1)利用导数的几何意义表述出切线的斜率,就是导数值,然后得到结论。
(2)利用已知关系式求解导数得到导数为正或者为负时的解集,得到单调区间,进而分析最值问题的运算。
解析:(Ⅰ)由导数的几何意义=12 ……………1分
∴ ∴ ∴ …………………4分
(Ⅱ)∵ ,
∴ ……6分
由 得,
∵ [-1,1],
∴ 当[-1,0)时,,递增;
当(0,1]时,,递减。……………9分
∴ 在区间[-1,1]上的最大值为
∵ ,∴ =1 ……………………11分
∵ ,
∴ ∴ 是函数的最小值,
∴ ∴
∴ = ………………13分
科目:高中数学 来源:2015届江西省高一第二次月考数学试卷(解析版) 题型:解答题
(本小题满分13分)已知函数.
(1)求函数的最小正周期和最大值;
(2)在给出的直角坐标系中,画出函数在区间上的图象.
(3)设0<x<,且方程有两个不同的实数根,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年福建省高三年级八月份月考试卷理科数学 题型:解答题
(本小题满分13分)已知定义域为的函数是奇函数.
(1)求的值;(2)判断函数的单调性;
(3)若对任意的,不等式恒成立,求k的取值范围.
查看答案和解析>>
科目:高中数学 来源:河南省09-10学年高二下学期期末数学试题(理科) 题型:解答题
(本小题满分13分)如图,正三棱柱的所有棱长都为2,为的中点。
(Ⅰ)求证:∥平面;
(Ⅱ)求异面直线与所成的角。www.7caiedu.cn
[来源:KS5
U.COM
查看答案和解析>>
科目:高中数学 来源:2010-2011学年福建省高三5月月考调理科数学 题型:解答题
(本小题满分13分)
已知为锐角,且,函数,数列{}的首项.
(1) 求函数的表达式;
(2)在中,若A=2,,BC=2,求的面积
(3) 求数列的前项和
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com