分析 (1)函数f(x)为R上的奇函数.根据函数f(x)对任意的x,y∈R,总有f(x+y)=f(x)+f(y).令y=x=0,可得f(0)=0,令y=-x,可得f(x-x)=f(x)+f(-x),化为f(-x)=-f(x),即可证明.
(2)函数f(x)在R上单调递减.下面给出证明:?x1<x2,则x1-x2<0,f(x1-x2)>0,只要证明f(x1)-f(x2)>0即可.
解答 解:(1)函数f(x)为R上的奇函数.∵函数f(x)对任意的x,y∈R,总有f(x+y)=f(x)+f(y).
∴令y=x=0,可得f(0+0)=f(0)+f(0),解得f(0)=0,
令y=-x,可得f(x-x)=f(x)+f(-x),化为f(-x)=-f(x),
因此函数f(x)为R上的奇函数.
(2)函数f(x)在R上单调递减.
下面给出证明:?x1<x2,则x1-x2<0,f(x1-x2)>0,
∴f(x1)-f(x2)=f(x1)+f(-x2)=f(x1-x2)>0,
即f(x1)>f(x2).
∴函数f(x)在R上单调递减.
点评 本题考查了抽象函数的单调性与奇偶性、不等式与方程的解法,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {1} | B. | {0,1} | C. | {-1,0,1,2} | D. | {-1,0,1,2,3} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 1 | C. | $\frac{3}{2}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 向左平移$\frac{π}{12}$个单位 | B. | 向右平移$\frac{π}{12}$个单位 | ||
| C. | 向左平移$\frac{π}{6}$个单位 | D. | 向右平移$\frac{π}{6}$个单位 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{32π}{3}$ | B. | 32π | C. | 64π | D. | $\frac{64π}{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com