精英家教网 > 高中数学 > 题目详情
给出下列三个命题:
①若直线l过抛物线y=2x2的焦点,且与这条抛物线交于A,B两点,则|AB|的最小值为2;
②双曲线的离心率为
③若,则这两圆恰有2条公切线;
④若直线l1:a2x-y+6=0与直线l2:4x-(a-3)+9-0互相垂直,则a=-1.
其中正确命题的序号是    .(把你认为正确命题的序号都填上)
【答案】分析:①利用|AB|的最小值为抛物线的通径2p,进行判断.
②先将双曲线方程化成标准形式,再利用其几何性质求出离心率即可进行判断.
③求出两个圆的圆心和半径,再求出圆心距,由两圆的圆心距等于 ,大于两圆的半径之差,小于两圆的半径之和,故两圆相交,从而得出结论.
④由直线垂直的等价条件求出两直线垂直时a的值,再判断其是否成立.
解答:解:①∵过抛物线y=2x2的焦点,且与这条抛物线交于A,B两点,则|AB|的最小值为抛物线的通径2p,由抛物线y=2x2
的方程即x2=y 知,p=,2p=,则|AB|的最小值为 ,故①不正确.
②双曲线
a=3,b=4,c=5,∴它的离心率为;正确.
③∵⊙C1:x2+y2+2x=0,即  (x+1)2+y2=1,表示圆心为(-1,0),半径等于1的圆.
⊙C2:x2+y2+2y-1=0 即,x2+(y+1)2=2,表示圆心为(0,-1),半径等于 的圆.
两圆的圆心距等于 ,大于两圆的半径之差,小于两圆的半径之和,故两圆相交,故两圆的公切线
由2条,故③正确.
④当直线a2x-y+6=0与4x-(a-3)y+9=0互相垂直时,则有4a2+(a-3)=0,解得a=-1或 ,故错.
故答案为:②③.
点评:本题考查直线、抛物线、双曲线、圆的性质,两圆的位置关系,掌握圆锥曲线的性质是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

关于函数f(x)=sinx(cosx-sinx)+
1
2
,给出下列三个命题:
(1)函数f(x)在区间[
π
2
8
]
上是减函数;
(2)直线x=
π
8
是函数f(x)的图象的一条对称轴;
(3)函数f(x)的图象可以由函数y=
2
2
sin2x
的图象向左平移
π
4
而得到.
其中正确的命题序号是
 
.(将你认为正确的命题序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列三个命题:
①函数y=
1
2
ln
1-cosx
1+cosx
y=lntan
x
2
是同一函数;
②若函数y=f(x)与y=g(x)的图象关于直线y=x对称,则函数y=f(2x)与y=
1
2
g(x)
的图象也关于直线y=x对称;
③若奇函数f(x)对定义域内任意x都有f(x)=f(2-x),则f(x)为周期函数.
其中真命题是(  )
A、①②B、①③C、②③D、②

查看答案和解析>>

科目:高中数学 来源: 题型:

14、已知直线m,n与平面α,β,给出下列三个命题:①若m∥α,n∥α,则m∥n;②若m∥α,n⊥α,则n⊥m;③若m⊥α,m∥β,则α⊥β其中正确命题的序号是
②③

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列三个命题:
①函数y=ax(a>0且a≠1)与函数y=logax(a>0且a≠1)的定义域相同;
②函数y=x3与y=3x的值域相同;
③函数y=
1
2
+
1
2x-1
y=lg(x+
x2+1
)
都是奇函数.
其中正确命题的序号是
①③
①③
(把你认为正确的命题序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2000•上海)设有不同的直线a、b和不同的平面α、β、γ,给出下列三个命题:
(1)若a∥α,b∥α,则a∥b.
(2)若a∥α,a∥β,则α∥β.
(3)若a∥γ,β∥γ,则a∥β.
其中正确的个数是(  )

查看答案和解析>>

同步练习册答案