解:(1)因为f(x)=x4+bx2+cx+d,所以h(x)=f′(x)=x3-12x+c.
由题设,方程h(x)=0有三个互异的实根.
考察函数h(x)=x3-12x+c,则h′(x)=0,得x=±2.
所以故-16<c<16.
(2)存在c∈(-16,16),使f′(x)≥0,即x3-12x≥-c,(*)
所以x3-12x>-16,即(x-2)2(x+4)>0(*)在区间[m-2,m+2]上恒成立.
所以[m-2,m+2]是不等式(*)解集的子集.
所以或m-2>2,即-2<m<0,或m>4.
(3)由题设,可得存在α,β∈R,使f′(x)=x3+2bx+c=(x-t1)(x2+αx+β),
且x2+αx+β≥0恒成立.
又f?(t2)=0,且在x=t2两侧同号,
所以f?(x)=(x-t1)(x-t2)2.
另一方面,g′(x)=x3+(2b-1)x+t1+c
=x3+2bx+c-(x-t1)=(x-t1)[(x-t2)2-1].
因为t1<x<t2,且t2-t1<1,所以-1<t1-t2<x-t2<0.
所以0<(x-t2)2<1,所以(x-t2)2-1<0.
而x-t1>0,所以g′(x)<0,所以g(x)在(t1,t2)内单调减.
从而g(x)在(t1,t2)内最多有一个零点.
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源:2010年江苏省泰州市高考数学二模试卷(解析版) 题型:解答题
查看答案和解析>>
科目:高中数学 来源:2010年江苏省南通市高三第二次调研数学试卷(解析版) 题型:解答题
查看答案和解析>>
科目:高中数学 来源:2010年江苏省高三数学中等生强化练习(9)(解析版) 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com