一个棱长为8cm的密封正方体盒子中放一个半径为1cm的小球,无论怎样摇动盒子,则小球在盒子中不能到达的空间体积为 .
解析试题分析:小球在盒子不能到达的空间要分以下几种情况,在正方体顶点处的小正方体中,其体积等于小正方体体积减球的体积,在棱长处对应的正方体中,其体积等于这些小正方体体积的和减以球的直径为底面直径,以正方体和的高为高的圆柱,其他空间小球均能到达,综合后即可得到结果.解:在正方体的8个顶点处的单位立方体空间内,小球不能到达的空间为:8[13- (×13)]=8-,除此之外,在以正方体的棱为一条棱的12个1×1×6的正四棱柱空间内,小球不能到达的空间共为 [1×1×6- (π×12)×6]=72-18π.其他空间小球均能到达.故小球不能到达的空间体积为=
考点:球的体积
点评:本题考查的知识点是球的体积,棱柱的体积,其中熟练掌握棱柱和不堪的几何特征,建立良好的空间想象能力是解答本题的关键.
科目:高中数学 来源: 题型:填空题
下列四个命题:
①两个相交平面有不在同一直线上的三个公交点
②经过空间任意三点有且只有一个平面
③过两平行直线有且只有一个平面
④在空间两两相交的三条直线必共面
其中正确命题的序号是
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com