定理:若函数
在闭区间[m,n]上是连续的单调函数,且
,则存在唯一一个
。已知![]()
(1)若
是减函数,求a的取值范围。
(2)是否存在
同时成立,若存在,指出c、d之间的等式关系,若不存在,请说明理由。
科目:高中数学 来源: 题型:
| f(x2)-f(x1) |
| x2-x1 |
| f(b)-f(a) |
| b-a |
| b-a |
| b |
| b |
| a |
| b-a |
| a |
查看答案和解析>>
科目:高中数学 来源: 题型:
| π |
| 2 |
| π |
| 2 |
| π |
| 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
已知函数f(x)=mx3+nx2(m、n∈R ,m≠0)的图像在(2,f(2))处的切线与x轴平行.
(1)求n,m的关系式并求f(x)的单调减区间;
(2)证明:对任意实数0<x1<x2<1, 关于x的方程:
在(x1,x2)恒有实数解
(3)结合(2)的结论,其实我们有拉格朗日中值定理:若函数f(x)是在闭区间[a,b]上连续不断的函数,且在区间(a,b)内导数都存在,则在(a,b)内至少存在一点x0,使得
.如我们所学过的指、对数函数,正、余弦函数等都符合拉格朗日中值定理条件.试用拉格朗日中值定理证明:
当0<a<b时,
(可不用证明函数的连续性和可导性)
查看答案和解析>>
科目:高中数学 来源:2008-2009学年广东省广州六中高三(上)9月月考数学试卷(理科)(解析版) 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com