精英家教网 > 高中数学 > 题目详情
15.平面直角坐标系xOy中,曲线C1上的动点M到点F(0,1)的距离比它到x轴的距离大1.
(1)求曲线C1方程;
(2)设P为C1上一点(位于y轴右侧),过P作C1的切线,与x轴交于A.直线AB与圆C2:x2+(y-1)2=1相切于点B(异于点O),问△PAB与△PAO的面积之比是否为定值?若是,求出该比值;若不是,说明理由.

分析 (1)利用曲线C1上的动点M到点F(0,1)的距离与它到y=-1的距离相等,可知曲线C1是以F(0,1)为焦点,开口向上的抛物线,进而计算即得结论;
(2)通过设P(x0,$\frac{1}{4}$${{x}_{0}}^{2}$),进而计算出切线AP方程为y=$\frac{{x}_{0}}{2}$x-$\frac{1}{4}$${{x}_{0}}^{2}$,并令y=0可知A($\frac{1}{2}$x0,0),通过设圆C2的切线AB的方程为x=ty+$\frac{1}{2}$x0,利用1=$\frac{|0-t-\frac{1}{2}{x}_{0}|}{\sqrt{1+{t}^{2}}}$可知圆C2的切线AB的方程为x=$\frac{4-{{x}_{0}}^{2}}{4{x}_{0}}$y+$\frac{1}{2}$x0,利用圆外一点切线的性质计算可知dAB=yP,进而可得结论.

解答 解:(1)∵曲线C1上的动点M到点F(0,1)的距离比它到x轴的距离大1,
∴曲线C1上的动点M到点F(0,1)的距离与它到y=-1的距离相等,
∴曲线C1是以F(0,1)为焦点,开口向上的抛物线,
∴曲线C1方程为:x2=4y;
(2)结论:△PAB与△PAO的面积相等.
理由如下:
设P(x0,$\frac{1}{4}$${{x}_{0}}^{2}$),则过点P的曲线C1的切线的斜率为$\frac{1}{2}$x0
则切线AP方程为:y=$\frac{{x}_{0}}{2}$x-$\frac{1}{4}$${{x}_{0}}^{2}$,
令y=0可知x=$\frac{1}{2}$x0,即A($\frac{1}{2}$x0,0),
设圆C2的切线AB的方程为:x=ty+$\frac{1}{2}$x0
则1=$\frac{|0-t-\frac{1}{2}{x}_{0}|}{\sqrt{1+{t}^{2}}}$,整理得:t=$\frac{1}{{x}_{0}}$-$\frac{{x}_{0}}{4}$,
∴圆C2的切线AB的方程为:x=$\frac{4-{{x}_{0}}^{2}}{4{x}_{0}}$y+$\frac{1}{2}$x0
点P到直线AB的距离dAB=$\frac{|{x}_{0}+(\frac{{x}_{0}}{4}-\frac{1}{{x}_{0}})•\frac{1}{4}{{x}_{0}}^{2}-\frac{1}{2}{x}_{0}|}{\sqrt{1+(\frac{{x}_{0}}{4}-\frac{1}{{x}_{0}})^{2}}}$=$\frac{|\frac{{{x}_{0}}^{3}+4{x}_{0}}{16}|}{\sqrt{\frac{1}{2}+\frac{{{x}_{0}}^{2}}{16}+\frac{1}{{{x}_{0}}^{2}}}}$=$\frac{1}{4}$${{x}_{0}}^{2}$,
又∵AB=OA,dAB=yP
∴△PAB与△PAO的面积相等.

点评 本题是一道直线与圆锥曲线的综合题,考查运算求解能力,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.(1)已知一次函数f(x)满足f[f(x)]=4x+3,求f(x);
(2)已知函数f(x)满足3f(x)+2f(-x)=2x+5,求f(x).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某校从参加高一年级期末考试的学生中抽出60名学生,将其数学成绩(满分100分,均为整数)分成六段[40,50),[50,60)…[90,100]后画出如下部分频率分布直方图.根据图形的信息,回答下列问题:
(1)求第四小组的频率,补全这个频率分布直方图;并估计该校学生的数学成绩的中位数.(精确到0.1);
(2)按分层抽样的方法在数学成绩是[60,70),[70,80)的两组学生中选6人,再在这6人种任取两人,求他们的分数在同一组的概率;
(3)若从全市参加高一年级期末考试的学生中,任意抽取3个学生,设这3个学生中数学成绩为80分以上(包括80分)的人数为X,(以该校学生的成绩的频率估计概率),求X的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设全集U是实数集R,M={x|x2>4},N为函数y=ln(4x-3-x2)的定义域,则图中阴影部分所表示的集合是{x|1<x≤2}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在极坐标系中,设圆C:ρ=4cosθ与直线l:θ=$\frac{π}{4}$(ρ∈R)交于A,B两点,求以AB为直径的圆的极坐标方程为(  )
A.ρ=2$\sqrt{2}$sin(θ+$\frac{π}{4}$)B.ρ=2$\sqrt{2}$sin(θ-$\frac{π}{4}$)C.ρ=2$\sqrt{2}$cos(θ+$\frac{π}{4}$)D.ρ=-2$\sqrt{2}$cos(θ-$\frac{π}{4}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设函数$f(x)=sin(2x-\frac{π}{6})$,则该函数的最小正周期为π,f(x)在$[0,\frac{π}{2}]$的最小值为-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知二次函数f(x)=ax2+bx(a≠0),并且满足f(1+x)=f(1-x),且方程f(x)-x=0有且只有一个根.
(1)求f(x)的解析式;
(2)若对任意的x∈[-2,2],不等式f(x)≤m-$\frac{3}{2}$x2恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.命题“?x∈R,x>sinx”的否定是?x∈R,x≤sinx.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某校高中部有三个年级,其中高三有学生1000人,现采用分层抽样法抽取一个容量为165的样本,已知在高一年级抽取了55人,高二年级抽取了60人,则高中部共有多少学生?并就高三年级写出具体的抽样过程.

查看答案和解析>>

同步练习册答案