精英家教网 > 高中数学 > 题目详情

如图所示,扇形AOB,圆心角AOB的大小等于,半径为2,在半径OA上有一动点C,过点C作平行于OB的直线交弧AB于点P.

1C是半径OA的中点,求线段PC的长;

2,面积的最大值及此时的值.

 

【答案】

12时,取得最大值.

【解析】

试题分析:1是半径的中点,求线段的长,在中,由于,故,由已知可知,利用余弦定理求得的值.2,面积的最大值及此时的值,由题意可知利用正弦定理求得的用的表达式的面积为,则,利用两角和差的正弦公式化为,可得时,取得最大值为

试题解析:1中,,,

5

2平行于

中,由正弦定理得,即

,. 8

的面积为,则

=, · 10

时,取得最大值. 12

考点:余弦定理;两角和与差的正弦函数.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图所示,扇形AOB中,
AB
所对的圆心角是60°,半径为50米,求
AB
的长l(精确到0.1米).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•宝山区二模)如图所示,扇形AOB,圆心角AOB的大小等于
π3
,半径为2,在半径OA上有一动点C,过点C作平行于OB的直线交弧AB于点P.
(1)若C是半径OA的中点,求线段PC的大小;
(2)设∠COP=θ,求△POC面积的最大值及此时θ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•宝山区二模)如图所示,扇形AOB,圆心角AOB的大小等于
π3
,半径为2,在半径OA上有一动点C,过点C作平行于OB的直线交弧AB于点P.
(1)若C是OA的中点,求PC;
(2)设∠COP=θ,求△POC周长的最大值及此时θ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,扇形AOB,圆心角AOB等于60°,半径为2,在弧AB上有一动点P,过P引平行于OB的直线和OA交于点C,设∠AOP=,求△POC面积的最大值及此时的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,扇形AOB,圆心角AOB等于60°,半径为2,在弧AB上有一动点P,过P引平行于OB的直线和OA交于点C,设∠AOP=,求△POC面积的最大值及此时的值.

查看答案和解析>>

同步练习册答案