精英家教网 > 高中数学 > 题目详情
13.若f(x)=4x2+1,则f(x+1)=4x2+8x+5.

分析 把x+1代入已知函数解析式,化简可得.

解答 解:∵f(x)=4x2+1,
∴f(x+1)=4(x+1)2+1=4x2+8x+5
故答案为:4x2+8x+5

点评 本题考查函数解析式的求解,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知图中阴影部分的面积为正整n,则二项式(x-$\frac{2}{\sqrt{x}}$)n 的展开式中的常数项为(  )
A.240B.一240C.60D.一60

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=x2-2ax+1在区间[-3,2]上有最小值,记作g(a)
(Ⅰ)求g(a)的函数表达式;
(Ⅱ)求g(a)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.下列说法正确的是④
①4cos10°-tan80°化简结果为$\sqrt{3}$;
②sinx+cosx+sinxcosx最大值为2;
③y=$\frac{sinx+1}{cosx+2}$的最大值为1;
④y=x+$\sqrt{4-{x^2}}$的最大值为2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知tanα=2,则sinαcosα=(  )
A.-$\frac{2}{3}$B.$\frac{2}{5}$C.-$\frac{4}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=x2-4|x+1|+1.
(1)去绝对值,把函数f(x)写成分段函数的形式,并作出其图象;
(2)求函数f(x)的单调区间;
(3)求函数f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若圆C的方程为:$\left\{\begin{array}{l}{x=1+cosθ}\\{y=1+sinθ}\end{array}\right.$(θ为参数),以原点O为极点,以x轴正半轴为极轴建立极坐标系,则圆C的圆心极坐标为($\sqrt{2},\frac{π}{4}$).(极角范围为[0,2π))

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知数列{an}是各项均为正数的等比数列,且a1a2=2,a3a4=32,求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在△ABC中,角A,B,C所对的边分别是a,b,c,且csinA=$\sqrt{3}$acosC.
(1)求角C;
(2)若c=$\sqrt{14}$,且sinC=3sin2A+sin(A-B),求△ABC的面积.

查看答案和解析>>

同步练习册答案