16£®Êý×Ö1£¬2£¬3£¬¡­£¬n£¨n¡Ý2£©µÄÈÎÒâÒ»¸öÅÅÁмÇ×÷£¨a1£¬a2£¬¡­£¬an£©£¬ÉèSnΪËùÓÐÕâÑùµÄÅÅÁй¹³ÉµÄ¼¯ºÏ£®¼¯ºÏAn={£¨a1£¬a2£¬¡­£¬an£©¡ÊSn|ÈÎÒâÕûÊýi£¬j£¬1¡Üi£¼j¡Ün£¬¶¼ÓÐai+i¡Üaj-j}£»¼¯ºÏBn={£¨a1£¬a2£¬¡­£¬an}¡ÊSn|ÈÎÒâÕûÊýi£¬j£¬1¡Üi£¼n£¬¶¼ÓÐai+i¡Üaj+j}£®
£¨¢ñ£©ÓÃÁоٷ¨±íʾ¼¯ºÏA3£¬B3
£¨¢ò£©Ç󼯺ÏAn¡ÉBnµÄÔªËØ¸öÊý£»
£¨¢ó£©¼Ç¼¯ºÏBnµÄÔªËØ¸öÊýΪbn£®Ö¤Ã÷£ºÊýÁÐ{bn}ÊǵȱÈÊýÁУ®

·ÖÎö £¨¢ñ£©¼¯ºÏA3ÊôÓÚµ¥µ÷µÝÔöÅÅÁУ¬¼¯ºÏB3ÊôÓÚʵÊý¶Ô£¬ÀûÓÃÁоٷ¨±íʾ¼¯ºÏA3£¬B3¼´¿É£»
£¨¢ò£©¸ù¾ÝÌâÒâÖªAn={£¨1£¬2£¬3£¬¡­£¬n£©}¡¢£¨1£¬2£¬3£¬¡­£¬n£©¡ÊBn£¬ËùÒÔAn⊆Bn£®ËùÒÔ¼¯ºÏAn¡ÉBnµÄÔªËØ¸öÊýΪ1£®
£¨¢ó£©ÓÉ£¨¢ò£©Öª£¬bn¡Ù0£®ÒòΪB2={£¨1£¬2£©£¬£¨2£¬1£©}£¬ËùÒÔb2=2£®µ±n¡Ý3ʱ£¬¿¼ÂÇBnÖеÄÔªËØ£¨a1£¬a2£¬a3£¬¡­£¬an£©£®
·ÖÀàÌÖÂÛ£º£¨1£©¼ÙÉèak=n£¨1¡Ük£¼n£©£®ÓÉÒÑÖª£¬ak+k¡Üak+1+£¨k+1£©£¬
ÒÀ´ËÀàÍÆ£¬Èôak=n£¬Ôòak+1=n-1£¬ak+2=n-2£¬¡­£¬an=k£®
¢ÙÈôk=1£¬ÔòÂú×ãÌõ¼þµÄ1£¬2£¬3£¬¡­£¬nµÄÅÅÁУ¨a1£¬a2£¬a3£¬¡­£¬an£©ÓÐ1¸ö£®
¢ÚÈôk=2£¬Ôòa2=n£¬a3=n-1£¬a4=n-2£¬¡­£¬an=2£®
¢ÛÈô2£¼k£¼n£¬
£¨2£©¼ÙÉèan=n£¬Ö»Ð裨a1£¬a2£¬a3£¬¡­an-1£©ÊÇ1£¬2£¬3£¬¡­£¬n-1µÄÂú×ãÌõ¼þµÄÅÅÁУ¬´ËʱÂú×ãÌõ¼þµÄ1£¬2£¬3£¬¡­£¬nµÄÅÅÁУ¨a1£¬a2£¬a3£¬¡­£¬an£©ÓÐbn-1¸ö£®
½áºÏµÈ±ÈÊýÁе͍Òå½øÐÐÖ¤Ã÷£®

½â´ð ½â£º£¨¢ñ£©A3={£¨1£¬2£¬3£©}£¬B3={£¨1£¬2£¬3£©£¬£¨1£¬3£¬2£©£¬£¨2£¬1£¬3£©£¬£¨3£¬2£¬1£©}£®
£¨¢ò£©¿¼ÂǼ¯ºÏAnÖеÄÔªËØ£¨a1£¬a2£¬a3£¬¡­£¬an£©£®
ÓÉÒÑÖª£¬¶ÔÈÎÒâÕûÊýi£¬j£¬1¡Üi£¼j¡Ün£¬¶¼ÓÐai-i¡Üaj-j£¬
ËùÒÔ£¨ai-i£©+i£¼£¨aj-j£©+j£¬
ËùÒÔai£¼aj£®
ÓÉi£¬jµÄÈÎÒâÐÔ¿ÉÖª£¬£¨a1£¬a2£¬a3£¬¡­£¬an£©ÊÇ1£¬2£¬3£¬¡­£¬nµÄµ¥µ÷µÝÔöÅÅÁУ¬
ËùÒÔAn={£¨1£¬2£¬3£¬¡­£¬n£©}£®
ÓÖÒòΪµ±ak=k£¨k¡ÊN*£¬1¡Ük¡Ün£©Ê±£¬¶ÔÈÎÒâÕûÊýi£¬j£¬1¡Üi£¼j¡Ün£¬
¶¼ÓÐai+i¡Üaj+j£®
ËùÒÔ£¨1£¬2£¬3£¬¡­£¬n£©¡ÊBn£¬ËùÒÔAn⊆Bn£®
ËùÒÔ¼¯ºÏAn¡ÉBnµÄÔªËØ¸öÊýΪ1£®
£¨¢ó£©ÓÉ£¨¢ò£©Öª£¬bn¡Ù0£®
ÒòΪB2={£¨1£¬2£©£¬£¨2£¬1£©}£¬ËùÒÔb2=2£®
µ±n¡Ý3ʱ£¬¿¼ÂÇBnÖеÄÔªËØ£¨a1£¬a2£¬a3£¬¡­£¬an£©£®
£¨1£©¼ÙÉèak=n£¨1¡Ük£¼n£©£®ÓÉÒÑÖª£¬ak+k¡Üak+1+£¨k+1£©£¬
ËùÒÔak+1¡Ýak+k-£¨k+1£©=n-1£¬
ÓÖÒòΪak+1¡Ün-1£¬ËùÒÔak+1=n-1£®
ÒÀ´ËÀàÍÆ£¬Èôak=n£¬Ôòak+1=n-1£¬ak+2=n-2£¬¡­£¬an=k£®
¢ÙÈôk=1£¬ÔòÂú×ãÌõ¼þµÄ1£¬2£¬3£¬¡­£¬nµÄÅÅÁУ¨a1£¬a2£¬a3£¬¡­£¬an£©ÓÐ1¸ö£®
¢ÚÈôk=2£¬Ôòa2=n£¬a3=n-1£¬a4=n-2£¬¡­£¬an=2£®
ËùÒÔa1=1£®
´ËʱÂú×ãÌõ¼þµÄ1£¬2£¬3£¬¡­£¬nµÄÅÅÁУ¨a1£¬a2£¬a3£¬¡­£¬an£©ÓÐ1¸ö£®
¢ÛÈô2£¼k£¼n£¬
Ö»Òª£¨a1£¬a2£¬a3£¬¡­ak-1£©ÊÇ1£¬2£¬3£¬¡­£¬k-1µÄÂú×ãÌõ¼þµÄÒ»¸öÅÅÁУ¬¾Í¿ÉÒÔÏàÓ¦µÃµ½1£¬2£¬3£¬¡­£¬nµÄÒ»¸öÂú×ãÌõ¼þµÄÅÅÁУ®
´Ëʱ£¬Âú×ãÌõ¼þµÄ1£¬2£¬3£¬¡­£¬nµÄÅÅÁУ¨a1£¬a2£¬a3£¬¡­£¬an£©ÓÐbk-1¸ö£®
£¨2£©¼ÙÉèan=n£¬Ö»Ð裨a1£¬a2£¬a3£¬¡­an-1£©ÊÇ1£¬2£¬3£¬¡­£¬n-1µÄÂú×ãÌõ¼þµÄÅÅÁУ¬´ËʱÂú×ãÌõ¼þµÄ1£¬2£¬3£¬¡­£¬nµÄÅÅÁУ¨a1£¬a2£¬a3£¬¡­£¬an£©ÓÐbn-1¸ö£®
×ÛÉÏbn=1+1+b2+b3+¡­+bn-1£¬n¡Ý3£®
ÒòΪb3=1+1+b2=4=2b2£¬
ÇÒµ±n¡Ý4ʱ£¬bn=£¨1+1+b2+b3+¡­+bn-2£©+bn-1=2bn-1£¬
ËùÒÔ¶ÔÈÎÒân¡ÊN*£¬n¡Ý3£¬¶¼ÓÐ$\frac{b_n}{{{b_{n-1}}}}=2$£®
ËùÒÔ{bn}³ÉµÈ±ÈÊýÁУ®

µãÆÀ ±¾Ì⿼²éµÈ±È¹ØÏµµÄÈ·¶¨ÓëµÈ²îÊýÁеÄÐÔÖÊ£¬¿¼²éÔËËãÓëÍÆÀí¡¢Ö¤Ã÷µÄÄÜÁ¦£¬ÄѶȽϴó£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®ÒÑÖªÕýÏîµÈ±ÈÊýÁÐ{an}ÖУ¬SnΪÆäǰnÏîºÍ£¬a1=2£¬a2+a3=12£¬ÔòS5=32£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÒÑÖªº¯Êý$f£¨x£©=\frac{lnx+1}{x}$£®
£¨¢ñ£©ÇóÇúÏßy=f£¨x£© ÔÚº¯Êýf£¨x£© Áãµã´¦µÄÇÐÏß·½³Ì£»
£¨¢ò£©Çóº¯Êýy=f£¨x£© µÄµ¥µ÷Çø¼ä£»
£¨¢ó£©Èô¹ØÓÚx µÄ·½³Ìf£¨x£©=a Ç¡ÓÐÁ½¸ö²»Í¬µÄʵ¸ùx1£¬x2£¬ÇÒx1£¼x2£¬ÇóÖ¤£º${x_2}-{x_1}£¾\frac{1}{a}-1$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®ÒÑÖªº¯Êý$f£¨x£©=\left\{{\begin{array}{l}{sinx£¬x£¼1}\\{{x^3}-9{x^2}+25x+a£¬x¡Ý1}\end{array}}\right.$£¬Èôº¯Êýf£¨x£©µÄͼÏóÓëÖ±Ïßy=xÓÐÈý¸ö²»Í¬µÄ¹«¹²µã£¬ÔòʵÊýaµÄȡֵ¼¯ºÏΪ{-20£¬-16}£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÔOΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£®Ö±Ïßl£º$\sqrt{2}$¦Ñsin£¨¦È-$\frac{¦Ð}{4}$£©=m£¨m¡ÊR£©£¬Ô²CµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=1+3cost}\\{y=-2+3sint}\end{array}\right.$£¨tΪ²ÎÊý£©£®µ±Ô²ÐÄCµ½Ö±ÏßlµÄ¾àÀëΪ$\sqrt{2}$ʱ£¬ÇómµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®ÍÖÔ²$\frac{x^2}{12}+\frac{y^2}{4}=1$µÄ×ó¡¢ÓÒ½¹µã·Ö±ðΪF1£¬F2£¬¹ý½¹µãF1µÄÖ±Ïß½»¸ÃÍÖÔ²ÓÚA£¬BÁ½µã£¬Èô¡÷ABF2µÄÄÚÇÐÔ²Ãæ»ýΪ¦Ð£¬A£¬BÁ½µãµÄ×ø±ê·Ö±ðΪ£¨x1£¬y1£©£¬£¨x2£¬y2£©£¬Ôò|y1-y2|µÄֵΪ$\sqrt{6}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®Ä³ËÄÀâ×¶µÄÈýÊÓͼÈçͼËùʾ£¬¸ÃËÄÀâ×¶µÄ±íÃæ»ýÊÇ£¨¡¡¡¡£©
A£®20+2$\sqrt{5}$B£®14+4$\sqrt{5}$C£®26D£®12+2$\sqrt{5}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®Èçͼ£¬ÔÚÖ±ÈýÀâÖùABC-A1B1C1ÖУ¬AC=BC£¬FΪA1B1µÄÖе㣮ÇóÖ¤£º
£¨1£©B1C¡ÎÆ½ÃæFAC1£»
£¨2£©Æ½ÃæFAC1¡ÍÆ½ÃæABB1A1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®Ö´ÐÐÈçͼËùʾµÄ³ÌÐò¿òͼ£¬ÔòÊä³öS=£¨¡¡¡¡£©
A£®26B£®247C£®120D£®57

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸