精英家教网 > 高中数学 > 题目详情

已知AB为两定点,动点MA与到B的距离比为常数λ,求点M的轨迹方程,并注明轨迹是什么曲线.

M的轨迹方程是x2+y2+x+a2=0  点M的轨迹是以(-,0)为圆心,为半径的圆.


解析:

建立坐标系如图所示,

设|AB|=2a,则A(-a,0),B(a,0). 

M(x,y)是轨迹上任意一点.

则由题设,得=λ,坐标代入,得=λ,化简得

(1-λ2)x2+(1-λ2)y2+2a(1+λ2)x+(1-λ2)a2=0

(1)当λ=1时,即|MA|=|MB|时,点M的轨迹方程是x=0,点M的轨迹是直线(y轴).

(2)当λ≠1时,点M的轨迹方程是x2+y2+x+a2=0  点M的轨迹是以(-,0)为圆心,为半径的圆.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

以下四个命题:
①已知A、B为两个定点,若|PA|+|PB|=k(k为常数),则动点P的轨迹为椭圆.
②双曲线
x2
25
-
y2
9
=1
与椭圆
x2
35
+y2=1
有相同的焦点.
③方程2x2-5x+2=0的两根可分别作为椭圆和双曲线的离心率.
④过定圆C上一定点A作圆的动弦AB,O为坐标原点,若
OP
=
1
2
(
OA
+
OB
)
,则动点P的轨迹为椭圆;
其中真命题的序号为
②③
②③

查看答案和解析>>

科目:高中数学 来源: 题型:044

已知AB为两定点,动点MA与到B的距离比为常数λ,求点M的轨迹方程,并注明轨迹是什么曲线.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

以下四个命题:
①已知A、B为两个定点,若|PA|+|PB|=k(k为常数),则动点P的轨迹为椭圆.
②双曲线
x2
25
-
y2
9
=1
与椭圆
x2
35
+y2=1
有相同的焦点.
③方程2x2-5x+2=0的两根可分别作为椭圆和双曲线的离心率.
④过定圆C上一定点A作圆的动弦AB,O为坐标原点,若
OP
=
1
2
(
OA
+
OB
)
,则动点P的轨迹为椭圆;
其中真命题的序号为______.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知AB为两定点,且||=2c,C为动点且满足||=2a(ac>0,ac为常数),DAC中点,P在边BC上且·=0.

(1)以AB所在直线为x轴,AB中点为坐标原点,建立如图所示的平面直角坐标系,求点P的轨迹方程.

(2)若F、G是点P的轨迹上任意两个不同的点,且线段FG的中垂线与直线AB相交,交点为Qt,0).

①证明:存在最小的正数M,使得tM,并求M的值.

②若M=,求∠APC的取值范围.

查看答案和解析>>

同步练习册答案