精英家教网 > 高中数学 > 题目详情
13.函数$y=\sqrt{1+2x}+\sqrt{1-2x}$的值域为(  )
A.$[{1,\sqrt{2}}]$B.[2,4]C.$[{\sqrt{2},2}]$D.$[{1,\sqrt{3}}]$

分析 设2x=sinθ,利用三角函数化简y=$\sqrt{2}$(|sin($\frac{θ}{2}$+$\frac{π}{4}$)|+|cos($\frac{θ}{2}$+$\frac{π}{4}$)|),从而求值域.

解答 解:设2x=sinθ,
则$y=\sqrt{1+2x}+\sqrt{1-2x}$=$\sqrt{1+sinθ}$+$\sqrt{1-sinθ}$
=|sin$\frac{θ}{2}$+cos$\frac{θ}{2}$|+|sin$\frac{θ}{2}$-cos$\frac{θ}{2}$|
=$\sqrt{2}$|sin($\frac{θ}{2}$+$\frac{π}{4}$)|+$\sqrt{2}$|sin($\frac{θ}{2}$-$\frac{π}{4}$)|
=$\sqrt{2}$(|sin($\frac{θ}{2}$+$\frac{π}{4}$)|+|cos($\frac{θ}{2}$+$\frac{π}{4}$)|)
∵1≤|sin($\frac{θ}{2}$+$\frac{π}{4}$)|+|cos($\frac{θ}{2}$+$\frac{π}{4}$)|≤$\sqrt{2}$,
∴$\sqrt{2}$≤$\sqrt{2}$(|sin($\frac{θ}{2}$+$\frac{π}{4}$)|+|cos($\frac{θ}{2}$+$\frac{π}{4}$)|)≤2,
故选C.

点评 本题考查了三角函数的化简与值域的求法,关键在于换元.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.设F为抛物线C:y2=-12x的焦点,过抛物线C外一点A作抛物线C的切线,切点为B.若∠AFB=90°,则点A的轨迹方程为x=3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.平面内有n(n∈N*)个圆中,每两个圆都相交,每三个圆都不交于一点,若该n个圆把平面分成f(n)个区域,那么f(n)=n2-n+2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若关于x的方程(x-2)(x2-4x+m)=0有三个根,且这三个根恰好可以作为一个三角形的三条边的长,则m的取值范围是(3,4].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知a,b∈R+,则$\frac{{\sqrt{{a^3}b}}}{{\root{3}{ab}}}$=(  )
A.${a^{\frac{1}{6}}}{b^{\frac{7}{6}}}$B.${a^{\frac{7}{6}}}{b^{\frac{1}{6}}}$C.${a^{\frac{1}{3}}}{b^{\frac{1}{6}}}$D.${a^{\frac{1}{2}}}{b^{\frac{1}{6}}}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知$f(x)=\left\{{\begin{array}{l}{x-5({x≥6})}\\{f({x+2})({x<6})}\end{array}}\right.$,则f(5)=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=|2x|,现将y=f(x)的图象向右平移一个单位,再向上平移一个单位得到函数h(x)的图象.
(1)求函数h(x)的解析式;
(2)函数y=h(x)的图象与函数g(x)=kx2的图象在$x∈[{\frac{1}{2},3}]$上至少有一个交点,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知菱形ABCD的边长为2,求向量$\overrightarrow{AB}$-$\overrightarrow{CB}$+$\overrightarrow{CD}$的模的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知a是实常数,函数f(x)=xlnx+ax2
(1)若曲线y=f(x)在x=1处的切线过点A(0,-2),求实数a的值;
(2)若f(x)有两个极值点x1,x2(x1<x2),
①求证:-$\frac{1}{2}$<a<0;
②求证:f(x1)<0,f(x2)>-$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案