精英家教网 > 高中数学 > 题目详情

已知的最大值为,在区间上,函数值从减小到 ,函数图象与轴的交点坐标是                             (    )

 

 

A.            B.

C.         D.以上都不是

 

【答案】

B

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•昌平区一模)已知椭圆M:
x2
a2
+
y2
b2
=1(a>b>0)
,其短轴的一个端点到右焦点的距离为2,且点A(
2
,1)在椭圆M上.直线l的斜率为
2
2
,且与椭圆M交于B、C两点.
(Ⅰ)求椭圆M的方程;
(Ⅱ)求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•昌平区一模)已知D是由不等式组
x-y≥0
x+
3
y≥0
所确定的平面区域,则圆x2+y2=4在区域D内的弧长为
6
6
;该弧上的点到直线3x+y+2=0的距离的最大值等于
2+
10
5
2+
10
5

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•顺义区二模)已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的两个焦点分别为F1,F2,且|F1F2|=2,点P在椭圆上,且△PF1F2的周长为6.
(I)求椭圆C的方程;
(II)若点P的坐标为(2,1),不过原点O的直线l与椭圆C相交于A,B两点,设线段AB的中点为M,点P到直线l的距离为d,且M,O,P三点共线.求
12
13
|AB|2+
13
16
d2
的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•顺义区一模)已知函数f(x)=cos(2ωx-
π
6
)-cos(2ωx+
π
6
)+1-2sin2ωx,(x∈R,ω>0)的最小正周期为π.
(I)求ω的值;
(II)求函数f(x)在区间[-
π
4
π
3
]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•奉贤区二模)(文)已知f(n)是关于正整数n的命题.小明证明了命题f(1),f(2),f(3)均成立,并对任意的正整数k,在假设f(k)成立的前提下,证明了f(k+m)成立,其中m为某个固定的整数,若要用上述证明说明f(n)对一切正整数n均成立,则m的最大值为(  )

查看答案和解析>>

同步练习册答案