精英家教网 > 高中数学 > 题目详情
若曲线f(x)=acosx与曲线g(x)=x2+bx+1在交点(0,m)处有公切线,则a+b=(  )
A、1B、2C、3D、4
考点:利用导数研究曲线上某点切线方程
专题:导数的综合应用
分析:求出函数f(x)和g(x)的导函数,然后由f(0)=g(0),f′(0)=g′(0)联立方程组求解a,b的值,则答案可求.
解答:解:∵f(x)=acosx,g(x)=x2+hx+1,
∴f′(x)=-asinx,g′(x)=2x+b,
∵曲线f(x)=acosx与曲线g(x)=x2+hx+1在交点(0,m)处有公切线,
∴f(0)=a=g(0)=1,且f′(0)=0=g′(0)=b,
即a=1,b=0.
∴a+b=1.
故选:A.
点评:本题考查利用导数研究曲线上某点的切线方程,函数在某点处的导数,就是曲线上过该点的切线的斜率,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设f(x)是定义在R上的偶函数,且当x≥0时,f(x)=ex.若对任意的x∈[a,a+1],不等式f(x+a)≥f2(x)恒成立,则实数a的最大值是(  )
A、-
3
2
B、-
2
3
C、-
3
4
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

设抛物线C:y2=8x的焦点为F,准线为直线l,过焦点F且倾斜角为θ(θ≠
π
2
)的直线交抛物线于A,B两点,给出下列命题:
①|AB|=
8
cos2θ

1
|FA|
+
1
|FB |
=
1
4

③以AB为直径的圆与抛物线的准线相切;
④设点B在直线l上的射影为B1,则点A、O、B1三点共线.
其中正确的个数是(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

抛物线C1:y2=2px(p>0)与双曲线C2
x2
a2
-
y2
b2
=1(a>0,b>0)交于A,B两点,C1与C2的两条渐近线分别交于异于原点的两点C,D,且AB,CD分别过C2,C1的焦点,则
|AB|
|CD|
=(  )
A、
5
2
B、
6
2
C、
5
D、
6

查看答案和解析>>

科目:高中数学 来源: 题型:

曲线y=e-2x+2在点(0,3)处的切线与直线y=0和y=x围成的三角形的面积为(  )
A、
1
4
B、
2
3
C、
1
2
D、
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

过点(0,-1)的直线l与两曲线y=lnx和x2=2py均相切,则p的值为(  )
A、
1
4
B、
1
2
C、2
D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P是曲线C:y=
1
x
(x>0)上的动点,过点P的曲线C的切线与x轴、y轴分别交于A、B两点,则三角形AOB的面积是(  )
A、定值1
B、定值2
C、定值4
D、随点P的位置变化而变化

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数y=f(x)的值域是[
1
2
,4],则函数F(x)=f(x)+
1
f(x)
的值域是(  )
A、[
1
2
,4]
B、[
5
2
17
4
]
C、[2,
17
4
]
D、[4,
17
4
]

查看答案和解析>>

科目:高中数学 来源:2015届宁夏高三上学期期中考试理科数学试卷(解析版) 题型:选择题

已知非零向量则△ABC的形状是

A.等边三角形

B.直角三角形

C.等腰(非等边)三角形

D.三边均不相等的三角形

 

查看答案和解析>>

同步练习册答案