精英家教网 > 高中数学 > 题目详情
设0<θ<,曲线x2sinθ+y2cosθ=1和x2cosθ-y2sinθ=1有4个不同的交点.
(Ⅰ)求θ的取值范围;
(Ⅱ)证明这4个交点共圆,并求圆半径的取值范围.
【答案】分析:(I)联立方程,组成方程组,有4个不同交点等价于x2>0,且y2>0,即可求θ的取值范围;
(Ⅱ)确定圆的圆心在原点,半径为,从而可求圆半径的取值范围.
解答:(I)解:两曲线的交点坐标(x,y)满足方程组
有4个不同交点等价于x2>0,且y2>0,即
又因为,所以得θ的取值范围为(0,
(II)证明:由(I)的推理知4个交点的坐标(x,y)满足方程
即得4个交点共圆,该圆的圆心在原点,半径为
因为cosθ在上是减函数,所以由
知r的取值范围是
点评:本小题主要考查坐标法、曲线的交点和三角函数性质等基础知识,以及逻辑推理能力和运算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设O为坐标原点,曲线x2+y2+2x-6y+1=0上有两点P、Q,满足关于直线x+my+4=0对称,又满足
OP
OQ
=0.
(1)求m的值;
(2)求直线PQ的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

设O为坐标原点,曲线x2+y2+2x-6y+1=0上有两点P、Q,满足关于直线x+my+4=0对称,又满足·=0.

(1)求m的值;

(2)求直线PQ的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

O为坐标原点,曲线x2+y2+2x-6y+1=0上有两点PQ,满足关于直线x+my+4=0对称,又满足·=0.

(1)求m的值;

(2)求直线PQ的方程.

查看答案和解析>>

科目:高中数学 来源:2013届湖北省高二上学期期中考试理科数学 题型:解答题

((本小题满分13分)设O为坐标原点,曲线x2y2+2x-6y+1=0上有两点PQ关于直线xmy+4=0对称,又满足OP⊥OQ.

(1)求m的值;

(2)求直线PQ的方程.

 

查看答案和解析>>

科目:高中数学 来源:广东省高考数学一轮复习:8.6 圆的方程(解析版) 题型:解答题

设O为坐标原点,曲线x2+y2+2x-6y+1=0上有两点P、Q,满足关于直线x+my+4=0对称,又满足=0.
(1)求m的值;
(2)求直线PQ的方程.

查看答案和解析>>

同步练习册答案