先后2次抛掷一枚骰子,将得到的点数分别记为a,b.
则直线ax+by+5=0与圆x2+y2=1相切的概率为 ;
将a,b,5的值分别作为三条线段的长,则这三条线段能围成等腰三角形的概率为 。
,
(1)先后2次抛掷一枚骰子,将得到的点数分别记为a,b,事件总数为6×6=36.
∵直线ax+by+c=0与圆x2+y2=1相切的充要条件是
即:a2+b2=25,由于a,b∈{1,2,3,4,5,6}
∴满足条件的情况只有a=3,b=4,c=5;或a=4,b=3,c=5两种情况.
∴直线ax+by+c=0与圆x2+y2=1相切的概率是
(2)先后2次抛掷一枚骰子,将得到的点数分别记为a,b,事件总数为6×6=36.
∵三角形的一边长为5
∴当a=1时,b=5,(1,5,5) 1种
当a=2时,b=5,(2,5,5) 1种
当a=3时,b=3,5,(3,3,5),(3,5,5) 2种
当a=4时,b=4,5,(4,4,5),(4,5,5) 2种
当a=5时,b=1,2,3,4,5,6,(5,1,5),(5,2,5),(5,3,5),
(5,4,5),(5,5,5),(5,6,5) 6种
当a=6时,b=5,6,(6,5,5),(6,6,5) 2种
故满足条件的不同情况共有14种
答:三条线段能围成不同的等腰三角形的概率为.
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源:2014届福建省漳州市高二上学期期末考试理科数学卷(解析版) 题型:解答题
先后2次抛掷一枚骰子,将得到的点数分别记为a, b.
(1)求直线ax+by+5=0与圆 相切的概率;
(2)将a,b,5的值分别作为三条线段的长,求这三条线段能围成等腰三角形(含等边三角形)的概率.
查看答案和解析>>
科目:高中数学 来源:2010届高三数学每周精析精练:概率 题型:解答题
先后2次抛掷一枚骰子,将得到的点数分别记为a,b.
(1)求直线ax+by+5=0与圆x2+y2=1相切的概率;
(2)将a,b,5的值分别作为三条线段的长,求这三条线段能围成等腰三角形的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com