精英家教网 > 高中数学 > 题目详情
已知M是椭圆上一点,两焦点为F1,F2,点P是△MF1F2的内心,连接MP并延长交F1F2于N,则的值为( )
A.
B.
C.
D.
【答案】分析:由于三角形的内心是三个内角的平分线的交点,根据三角形内角平分线性质定理把所求的比值转化为三角形边长之间的比值关系来求解.
解答:解:如图,连接PF1,PF2.在△MF1P中,F1P是∠MF1N的角平分线,根据三角形内角平分线性质定理,
同理可得,固有
根据等比定理
故选:A.
点评:本题主要考查圆锥曲线的定义的应用,试题在平面几何中的三角形内角平分线性质定理、初中代数中的等比定理和圆锥曲线的定义之间进行了充分的交汇,在解决涉及到圆锥曲线上的点与焦点之间的关系的问题中,圆锥曲线的定义往往是解题的突破口.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知M是椭圆
x2
a2
+
y2
b2
=1(a>b>0)
上一点,两焦点为F1,F2,点P是△MF1F2的内心,连接MP并延长交F1F2于N,则
|MP|
|PN|
的值为(  )
A、
a
a2-b2
B、
b
a2-b2
C、
a2-b2
b
D、
a2-b2
a

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定点A(-2,
3
)
,F是椭圆
x2
16
+
y2
12
=1
的右焦点,M是椭圆上一点,满足|AM|+2|MF|的值最小,则点M的坐标和|AM|+2|MF|的最小值分别为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

已知M是椭圆数学公式上一点,两焦点为F1,F2,点P是△MF1F2的内心,连接MP并延长交F1F2于N,则数学公式的值为


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式

查看答案和解析>>

科目:高中数学 来源:2010-2011学年黑龙江省哈尔滨九中高三(上)期末数学试卷(理科)(解析版) 题型:选择题

已知M是椭圆上一点,两焦点为F1,F2,点P是△MF1F2的内心,连接MP并延长交F1F2于N,则的值为( )
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案