精英家教网 > 高中数学 > 题目详情
函数f(x)=xlnx-ax2-x(a∈R).
(I)若函数f(x)在x=1处取得极值,求a的值;
(II)若函数f(x)的图象在直线y=-x图象的下方,求a的取值范围;
(III)求证:20132012<20122013
分析:(I)利用f′(1)=0得到a,并利用极值的充分条件进行检验即可;
(II)由题意可得:xlnx-ax2-x<-x,由x>0,可化为a>
lnx
x
.设h(x)=
lnx
x
,利用导数即可得到极值及其最值;
(III)由(II)可知:h(x)在(e,+∞)上单调递减,可得
lnx
x
ln(x+1)
x+1
,化为lnxx+1>ln(x+1)x
即xx+1>(x+1)x,令x=2012,即可证明.
解答:解:(I)f′(x)=lnx-2ax,(x>0).
∵函数f(x)在x=1处取得极值,∴f′(1)=0,即0-2a=0,解得a=0.
∴f′(x)=lnx,
当x∈(0,1)时,f′(x)<0,函数f(x)在(0,1)内单调递减;
当x∈(1,+∞)时,f′(x)>0,函数f(x)在(1,+∞)内单调递增.
∴函数f(x)在x=1时取得极小值.
(II)由题意可得:xlnx-ax2-x<-x,
∴xlnx-ax2<0,
∵x>0,∴a>
lnx
x

设h(x)=
lnx
x
,则h′(x)=
1-lnx
x2

令h′(x)>0,解得0<x<e,∴h(x)在区间(0,e)上单调递增;
令h′(x)<0,解得e<x,∴h(x)在区间(e,+∞)上单调递减.
∴h(x)在x=e时取得极大值,即最大值,h(e)=
1
e

∴a>
1
e

(III)由(II)可知:h(x)在(e,+∞)上单调递减,
∴h(x)>h(x+1),
lnx
x
ln(x+1)
x+1
,化为lnxx+1>ln(x+1)x
∴xx+1>(x+1)x
令x=2012,可得20122013>20132012
点评:熟练掌握利用导数研究函数的单调性、极值与最值、把问题等价转化等是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数f(x)=xln|x|的图象大致是(  )
A、精英家教网B、精英家教网C、精英家教网D、精英家教网

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=xln(1+x)-a(x+1),其中a为实常数.
(1)当x∈[1,+∞)时,f′(x)>0恒成立,求a的取值范围;
(2)求函数g(x)=f′(x)-
ax1+x
的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=xln (x+2)-1的图象与x轴的交点个数为
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=xln(ex+1)-
12
x2+3,x∈[-t,t]
(t>0),若函数f(x)的最大值是M,最小值是m,则M+m=
6
6

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•孝感模拟)已知函数f(x)=xln x.
(1)求函数f(x)的单调区间;
(2)k为正常数,设g(x)=f(x)+f(k-x),求函数g(x)的最小值;
(3)若a>0,b>0证明:f(a)+(a+b)ln2≥f(a+b)-f(b)

查看答案和解析>>

同步练习册答案