精英家教网 > 高中数学 > 题目详情
2012年第三季度,国家电网决定对城镇居民民用电计费标准做出调整,并根据用电情况将居民分为三类:第一类的用电区间在(0,170],第二类在(170,260],第三类在(260,+∞)(单位:千瓦时.某小区共有1000户居民,现对他们的用电情况进行调查,得到频率分布直方图如图所示.
(1)求该小区居民用电量的中位数与平均数;
(2)利用分层抽样的方法从该小区内选出10位居民代表,若从该10户居民代表中任选两户居民,求这两户居民用电资费属于不同类型的概率;
(3)若该小区长期保持着这一用电消耗水平,电力部门为鼓励其节约用电,连续10个月,每个月从该小区居民中随机抽取1户,若取到的是第一类居民,则发放礼品一份,设X为获奖户数,求X的数学期望E(X)与方差D(X).
(1)∵从左边开始,前两个小矩形的面积之和为0.005×20+0.015×20=0.1+0.3=0.4<0.5,
设中位数为150+x,则0.02×x+0.4=0.5,解得x=5,∴中位数为155.
平均数为120×0.1+140×0.3+160×0.4+180×0.1+200×0.06+220×0.04=156.8;
(2)利用分层抽样的方法从该小区内选出10位居民代表,
得一类居民8户,二类居民2户,从中任取2户,共有
C210
=45种;
两户来自不同类型的有
C18
C12
=16种,
∴两户居民用电资费属于不同类型的概率为
16
45

(3)由题意知,该小区的第一类居民占80%,
则每个月从该小区居民中随机抽取1户,取到的是第一类居民的概率为0.8,
连续10个月抽取,设X为获奖户数,则X服从二项分布,
故X的数学期望E(X)=nP=10×0.8=8,
方差D(X)=nP(1-P)=10×0.8×0.2=1.6.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

厂家在产品出厂前,需对产品做检验,厂家将一批产品发给商家时,商家按合同规定也需随机抽取一定数量的产品做检验,以决定是否接收这批产品.
(Ⅰ)若厂家库房中的每件产品合格的概率为0.8,从中任意取出4件进行检验.求至少有1件是合格品的概率;
(Ⅱ)若厂家发给商家20件产品,其中有3件不合格,按合同规定该商家从中任取2件,都进行检验,只有2件都合格时才接收这批产品,否则拒收.求该商家可能检验出不合格产品数的分布列及期望,并求该商家拒收这批产品的概率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

奖器有10个小球,其中8个小球上标有数字2,2个小球上标有数字5,现摇出3个小球,规定所得奖金(元)为这3个小球上记号之和.
(1)求奖金为9元的概率
(2)(非实验班做)求此次摇奖获得奖金数额的分布列.
(实验班做)求此次摇奖获得奖金数额的分布列,期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

甲、乙两同学历次数学测验成绩(满分100)的茎叶图如下所示.
(Ⅰ)求出两人历次数学测验成绩的平均数及方差;
(Ⅱ)试将两名同学的成绩加以比较,看哪名同学的成绩较好,
阐明你的观点.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

一个口袋中装有1个红球和5个白球,一次摸奖从中摸两个球,两个球颜色不同则为中奖.
(1)求一次摸奖就中奖的概率;
(2)设三次摸奖(每次摸奖后放回)中奖的次数为ξ,求ξ的分布列及期望值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

前不久央视记者就“你幸福吗?”采访了走在接头及工作岗位上的部分人员.人们常说的“幸福感指数”就是指某个人主观地评价他对自己目前生活状态的满意程度,常用区间[0,10]内的一个数来表示,该数越接近10表示满意度越高.为了解某地区居民的幸福感,随机对该地区的男、女居民各500人进行了调查,调查数据如表所示:
幸福感指数[0,2)[2,4)[4,6)[6,8)[8,10]
男居民人数1020220125125
女居民人数1010180175125
根据表格,解答下面的问题:
(1)补全频率分布直方图,并根据频率分布直方图估算该地区居民幸福感指数的平均值;
(2)如果居民幸福感指数不小于6,则认为其幸福.据此,又在该地区随机抽取3对夫妻进行调查,用X表示他们之中幸福夫妻(夫妻二人都感到幸福)的对数,求X的分布列及期望(以样本的频率作为总体的概率).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

医生的专业能力参数K可有效衡量医生的综合能力,K越大,综合能力越强,并规定:能力参数K不少于30称为合格,不少于50称为优秀.某市卫生管理部门随机抽取300名医生进行专业能力参数考核,得到如图所示的能力K的频率分布直方图:

(1)求出这个样本的合格率、优秀率;
(2)现用分层抽样的方法从中抽出一个样本容量为20的样本,再从这20名医生中随机选出2名.
①求这2名医生的能力参数K为同一组的概率;
②设这2名医生中能力参数K为优秀的人数为X,求随机变量X的分布列和期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

袋中有大小相同的三个球,编号分别为1、2和3,从袋中每次取出一个球,若取到的球的编号为偶数,则把该球编号加1(如:取到球的编号为2,改为3)后放回袋中继续取球;若取到球的编号为奇数,则取球停止,用X表示所有被取球的编号之和.
(Ⅰ)求X的概率分布;
(Ⅱ)求X的数学期望与方差.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如果执行右边的程序框图,那么输出的(     )
A.22B.46 C.94D.190

查看答案和解析>>

同步练习册答案