分析 (Ⅰ)取CC1中点F,连结A1E,EF,FD1,则四边形A1EFD1即为所求四边形.
(Ⅱ)推导出A1E⊥AE,AE⊥A1D1,由此能证明AE⊥平面α.
解答 解:(Ⅰ)取CC1中点F,连结A1E,EF,FD1,![]()
则四边形A1EFD1即为所求四边形.(其它做法请酌情给分)…(4分)
证明:(Ⅱ)∵E为BB1中点,∴B1E=BE=1,A1E=AE=$\sqrt{{1}^{2}+{1}^{2}}$=$\sqrt{2}$,
又∵AA1=2,∴$A{{A}_{1}}^{2}$=${A}_{1}{E}^{2}+A{E}^{2}$,
∴A1E⊥AE,…(6分)
又∵A1D1⊥平面ABB1A1,AE?平面ABB1A1
∴AE⊥A1D1,…(8分)
又∵A1E?平面A1EFD1,A1D1?平面A1EFD1,A1E∩A1D1=A1,
∴AE⊥平面A1EFD1,∴AE⊥平面α.…(12分)
点评 本题考查图形有画法,考查线面垂直的证明,是中档题,解题时要认真审题,注意空间思维能力的培养.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|x>1} | B. | {x|x≥$\frac{1}{2}$} | C. | {x|x≤1} | D. | {x|x<$\frac{1}{2}$} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a>b>c | B. | b>a>c | C. | b>c>a | D. | c>b>a |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=-2x+4 | B. | $y=\frac{1}{2}x-1$ | C. | y=-2x-4 | D. | $y=\frac{1}{2}x-4$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com