精英家教网 > 高中数学 > 题目详情

若函数f(x)=|4x-x2|-a恰有3个零点,则a=________.

4
分析:先画出y=|4x-x2|图象,为y=4x-x2图象在x轴上方的不变,x轴下方的沿x轴翻折,此时y=|4x-x2|图象与x轴有2个交点,若把图象向上平移,则与x轴交点变为0个,向下平移,则与x轴交点先变为4个,再变为3个,最后变为2个,所以,要想有3个零点,只需与x轴有3个交点即可.
解答:∵利用含绝对值函数图象的做法可知,函数y=|4x-x2|的图象,为y=4x-x2图象在x轴上方的不变,x轴下方的沿x轴翻折,
∴y=|4x-x2|图象与x轴有两个交点,为(0,0)和(4,0)原来的顶点经过翻折变为(2,4)
f(x)=|4x-x2|-a图象为y=|4x-x2|图象发生上下平移得到,可知若把图象向上平移,则与x轴交点变为0个,向下平移,当平移的量没超过4时,x轴交点为4个,当平移4个单位长度时,与x轴交点变为3个,平移超过4个单位长度时,与x轴交点变为2个,
∴当a=4时,f(x)=|4x-x2|-a图象与x轴恰有3个交点,此时函数恰有3个零点.
故答案为4
点评:本题考查了含绝对值的函数图象的做法,为图象题,解题时须认真观察,找到突破口.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若函数f(x)=4×9-|x-2|-2(P-2)×3-|x-2|-2P2-P+1在区间[2,+∞)内至少存在一个实数c使f(c)>0,则实数P的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=|4-x2|的定义域为[a,b],值域为[0,2],定义区间[a,b]的长度为b-a,则区间[a,b]长度的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=4+ax(a>0且a≠1)在[1,2]上的最大值比最小值大
a2
,求a的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若函数f(x)=4×9-|x-2|-2(P-2)×3-|x-2|-2P2-P+1在区间[2,+∞)内至少存在一个实数c使f(c)>0,则实数P的取值范围是______.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0且a≠1,f(loga x)=(x-).

(1)试证明函数y=f(x)的单调性.

(2)是否存在实数m满足:当y=f(x)的定义域为(-1,1)时,有f(1-m)+f(1-m2)<0?若存在,求出其取值范围;若不存在,请说明理由.

(3)若函数f(x)-4恰好在(-∞,2)上取负值,求a的值.

查看答案和解析>>