精英家教网 > 高中数学 > 题目详情
18.函数f(x)=$\frac{x-a}{lnx}$的图象总在函数F(x)=$\sqrt{x}$的图象上方,求实数a的取值范围.

分析 函数f(x)的图象总在函数F(x)的图象的上方等价于f(x)>F(x)恒成立,即$\frac{x-a}{lnx}$>$\sqrt{x}$在(0,1)∪(1,+∞)上恒成立.分类讨论,利用分离参数法,即可求a的取值范围.

解答 解:函数f(x)的图象总在函数F(x)的图象的上方等价于f(x)>F(x)恒成立,
即$\frac{x-a}{lnx}$>$\sqrt{x}$在(0,1)∪(1,+∞)上恒成立.
①当0<x<1时,lnx<0,则$\frac{x-a}{lnx}$>$\sqrt{x}$等价于a>x-$\sqrt{x}$lnx,
令g(x)=x-$\sqrt{x}$lnx,g′(x)=$\frac{2\sqrt{x}-2-lnx}{2\sqrt{x}}$,
再令h(x)=2$\sqrt{x}$-2-lnx,h′(x)=$\frac{\sqrt{x}-1}{x}$
当0<x<1时,h′(x)<0,∴h(x)在(0,1)上递减,
∴当0<x<1时,h(x)>h(1)=0,
∴g′(x)=$\frac{2\sqrt{x}-2-lnx}{2\sqrt{x}}$>0,
所以g(x)在(0,1)上递增,g(x)<g(1)=1,∴a≥1;
②当x>1时,lnx>0,则$\frac{x-a}{lnx}$>$\sqrt{x}$等价于a<x-$\sqrt{x}$lnx,等价于a<g(x),
由①知,当x>1时,h′(x)>0,∴h(x)在(1,+∞)上递增,
∴当x>1时,h(x)>h(1)=0,g′(x)=$\frac{2\sqrt{x}-2-lnx}{2\sqrt{x}}$>0,
∴g(x)在(1,+∞)上递增,∴g(x)>g(1)=1,
∴a≤1.
由①及②得:a=1,
故所求a的取值范围是{1}.

点评 本题考查导数知识的运用,考查函数的单调性,考查恒成立问题,考查分类讨论的数学思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.如图,△ABC中,BD⊥AC于D,E为BD上一点,且∠ABD=38°,∠CBD=68°,∠BCE=14°,∠DCE=8°,求∠DAE的度数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数y=loga(x-1)(a>0,a≠1)的图象过定点A,若点A也在函数f(x)=2x+b的图象上,则f(log23)=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知$\frac{π}{4}<α<π,cos(α-\frac{π}{4})=\frac{3}{5}$,则tanα=(  )
A.7B.7或$\frac{1}{7}$C.-7D.$-\frac{1}{7}或7$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=$\frac{{a}x^{2}+1}{bx}$(b>0).
(1)求f(x)的单调递减区间;
(2)如果对任意的x>0.都有f(x)≥f(1)=2成立.求|[f(x)]3|-|f(x3)|,(x≠0)的最小值;
(3)若a>0,x1+x2>0,x2+x3>0,x3+x1>0,|xi|>$\frac{1}{\sqrt{a}}$(i=1,2,3),证明f(x1)+f(x2)+f(x3)>$\frac{2\sqrt{a}}{b}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.求下列抛物线的标准方程.
(1)焦点在y轴上,焦点到准线距离为1;
(2)焦点在直线2x-y+2=0上;
(3)抛物线上的点M(-3,m)到焦点的距离等于5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列命题中不正确的是(  )
A.向量$\overrightarrow{AB}$与向量$\overrightarrow{BA}$的长度相等
B.任意一个非零向量都可以平行移动
C.若$\overrightarrow{a}$∥$\overrightarrow{b}$,且$\overrightarrow{b}$≠$\overrightarrow{0}$,则$\overrightarrow{a}$≠$\overrightarrow{0}$
D.两个有共同起点且共线的向量,其终点不一定相同.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如图所示,线段AB时抛物线的焦点弦,F为抛物线焦点,若A,B在其准线上的射影分别为A1,B1,则∠A1FB1等于(  )
A.45°B.60°C.90°D.120°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.斜二测画法中,位于平面直角坐标系中的点M(4,4)在直观图中的对应点是M′,则点M′的坐标为(4,2).

查看答案和解析>>

同步练习册答案