精英家教网 > 高中数学 > 题目详情
7、已知各项为正数的等比数列{an}中,lg(a3•a8•a13)=6,则a1•a15=
10000
分析:利用等比中项的性质可知lg(a3•a8•a13)=lga83求得a8,进而根据a1•a15=(a82答案可得.
解答:解:lg(a3•a8•a13)=lga83=6
∴a8=100
∴a1•a15=(a82=10000
故答案为10000
点评:本题主要考查等比数列中等差中项的性质.属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知{an}是各项为正数的等比数列,且a1a3+2a2a4+a3a5=100,4是a2和a4的一个等比中项.
(1)求数列{an}的通项公式;
(2)若{an}的公比q∈(0,1),设bn=an•log2an,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源:深圳模拟 题型:解答题

已知{an}是各项为正数的等比数列,且a1a3+2a2a4+a3a5=100,4是a2和a4的一个等比中项.
(1)求数列{an}的通项公式;
(2)若{an}的公比q∈(0,1),设bn=an•log2an,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源:2010-2011学年广东省中山市高三(上)期数学试卷(解析版) 题型:解答题

已知{an}是各项为正数的等比数列,且a1a3+2a2a4+a3a5=100,4是a2和a4的一个等比中项.
(1)求数列{an}的通项公式;
(2)若{an}的公比q∈(0,1),设bn=an•log2an,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源:2010-2011学年广东省中山市高三(上)期末数学试卷(理科)(解析版) 题型:解答题

已知{an}是各项为正数的等比数列,且a1a3+2a2a4+a3a5=100,4是a2和a4的一个等比中项.
(1)求数列{an}的通项公式;
(2)若{an}的公比q∈(0,1),设bn=an•log2an,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源:2009-2010学年广东省深圳市五校高三联考数学试卷(理科)(解析版) 题型:解答题

已知{an}是各项为正数的等比数列,且a1a3+2a2a4+a3a5=100,4是a2和a4的一个等比中项.
(1)求数列{an}的通项公式;
(2)若{an}的公比q∈(0,1),设bn=an•log2an,求数列{bn}的前n项和Sn

查看答案和解析>>

同步练习册答案