精英家教网 > 高中数学 > 题目详情
设函数f(x)=|x2+2x-1|,若a<b<-1,且f(a)=f(b),则ab+a+b的取值范围为(  )
A.(-∞,-1)B.(-2,2)C.(-1,1)D.(-1,+∞)
f(x)=|x2+2x-1|=|(x+1)2-2|,图象为对称轴为x=-1抛物线,然后把x轴下方的图形关于x轴翻折上去,
设这个图形与x轴交点分别为x1,x2(x1<x2
那么在x1<x<x2,f(x)有最大值,在x=-1时取得,f(-1)=2
由f(x)=|x2+2x-1|=2,可得x=-3或者1,
∴-3<a<x1<b<-1,
若a<b<-1且f(a)=f(b),
此时a2+2a-1>0,b2+2b-1<0
那么有a2+2a-1=-(b2+2b-1)
解得:a+b=1-
a2+b2
2

∴ab+a+b=ab+1-
a2+b2
2
=1-
(a-b)2
2

∵-3<a<b<-1,
∴0<b-a<(-1)-(-3)=2
∴0<(b-a)2<4
∴-1<1-
(a-b)2
2
<1
即:-1<ab+a+b<1
故答案为:(-1,1).
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

若正实数x、y满足条件lg(x+y)=1,则
10
x
+
10
y
的最小值为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知不等式log2(ax2-3x+6)>2的解集{x|x<1或x>2}
(1)求a的值;
(2)设k为常数,求f(x)=
x2+k+a
x2+k
的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某家庭要建造一个长方体形储物间,其容积为2400m3,高为3m,后面有一面旧墙可以利用,没有花费,底部也没有花费,而长方体的上部每平方米的造价为150元,周边三面竖墙(即不包括后墙)每平方米的造价为120元,怎样设计才能使总造价最低?最低总造价是多少?

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知等比数列{an}中,公比q>0,若a2=3,则a1+a2+a3的最值情况为(  )
A.有最小值3B.有最大值12C.有最大值9D.有最小值9

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列命题中正确的是(  )
A.y=x+
1
x
的最小值是2
B.y=
x2+3
x2+2
的最小值是2
C.y=
x2+5
x2+4
的最小值是
5
2
D.y=2-3x-
4
x
的最大值是2-4
3

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知x>0,y>0,且x+y=1,则
1
x
+
1
y
的最小值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某公司有价值a万元的一条生产流水线,要提高该生产流水线的生产能力,就要对其进行技术改造,改造就需要投入资金,相应就要提高生产产品的售价.假设售价y万元与技术改造投入x万元之间的关系满足:
①y与a-x和x的乘积成正比;②x=
a
2
y=a2
0≤
x
2(a-x)
≤t
其中t为常数,且t∈[0,1].
(1)设y=f(x),试求出f(x)的表达式,并求出y=f(x)的定义域;
(2)求出售价y的最大值,并求出此时的技术改造投入的x的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知变量x,y满足约束条件 则的取值范围是(    )
A.B.C.D.(3,6]

查看答案和解析>>

同步练习册答案