精英家教网 > 高中数学 > 题目详情
在数列{an}中,a1=1,当n≥2时,其前n项和Sn满足Sn2=an(Sn-
1
2
)

(1)求an
(2)令bn=
Sn
2n+1
,求数列{bn}的前项和Tn
(1)当n≥2时,an=Sn-Sn-1
Sn2=(Sn-Sn-1)(Sn-
1
2
)=Sn2-
1
2
Sn-SnSn-1+
1
2
Sn-1

∴Sn-1-Sn=2SnSn-1
1
Sn
-
1
Sn-1
=2

即数列{
1
Sn
}
为等差数列,S1=a1=1,
1
Sn
=
1
S1
+(n-1)×2=2n-1

Sn=
1
2n-1
,…(4分)
当n≥2时,an=sn-sn-1=
1
2n-1
-
1
2n-3
=
-2
(2n-1)(2n-3)

an
1,n=1
-2
(2n-1)(2n-3)
,n≥2
…(8分)
(2)bn=
Sn
2n+1
=
1
(2n-1)(2n+1)
=
1
2
(
1
2n-1
-
1
2n+1
)

Tn=
1
2
[(1-
1
3
)+(
1
3
-
1
5
)+…+(
1
2n-1
-
1
2n+1
)]
=
1
2
(1-
1
2n+1
)=
n
2n+1
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在数列{an}中,
a
 
1
=1
an=
1
2
an-1+1
(n≥2),则数列{an}的通项公式为an=
2-21-n
2-21-n

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a 1=
1
3
,并且对任意n∈N*,n≥2都有an•an-1=an-1-an成立,令bn=
1
an
(n∈N*).
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)设数列{
an
n
}的前n项和为Tn,证明:
1
3
Tn
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a=
12
,前n项和Sn=n2an,求an+1

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a1=a,前n项和Sn构成公比为q的等比数列,________________.

(先在横线上填上一个结论,然后再解答)

查看答案和解析>>

科目:高中数学 来源:2012-2013学年广东省汕尾市陆丰市碣石中学高三(上)第四次月考数学试卷(理科)(解析版) 题型:解答题

在数列{an}中,a,并且对任意n∈N*,n≥2都有an•an-1=an-1-an成立,令bn=(n∈N*).
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)设数列{}的前n项和为Tn,证明:

查看答案和解析>>

同步练习册答案