精英家教网 > 高中数学 > 题目详情
12.已知函数f(x)满足f(x+1)=f(x-1),且f(x)是偶函数,当x∈[0,1]时,f(x)=x,若在区间[-1.3]上函数g(x)=f(x)-kx-k有4个零点,求实数k的取值范围.

分析 根据f(x+1)=f(x-1),可得f(x)是周期为2的周期函数. 再由f(x)是偶函数,当x∈[0,1]时,f(x)=x,可得函数在[-1,3]上的解析式.根据题意可得函数y=f(x)的图象与直线y=kx+k 有4个交点,数形结合可得实数k的取值范围.

解答 解:∵函数f(x)满足f(x+1)=f(x-1),
故有f(x+2)=f(x),
故f(x)是周期为2的周期函数.
再由f(x)是偶函数,当x∈[0,1]时,f(x)=x,
由于函数g(x)=f(x)-kx-k有4个零点,故函数y=f(x)的图象与直线y=kx+k 有4个交点,如图所示:

把点(3,1)代入y=kx+k,可得k=$\frac{1}{4}$,
数形结合可得实数k的取值范围是 (0,$\frac{1}{4}$],

点评 本题主要考查函数的周期性的应用,函数的零点与方程的根的关系,体现了转化、数形结合的数学思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.在函数f(x)=alnx+(x+1)2(x>0)的图象上任取两个不同的点P(x1,y1)、Q(x2,y2)(x1>x2),总能使得f(x1)-f(x2)>4(x1-x2),则实数a的取值范围为($\frac{1}{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知A,B,C,D是空间不共面四点.且满足AB=CD,AC=BD,AD=BC,则△BCD是(  )
A.钝角三角形B.直角三角形C.锐角三角形D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数f(x)=sinωx•cosωx的最小正周期为2,则ω=$\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设0<x<π,则函数y=$\frac{2-cosx}{sinx}$的最小值为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1的离心率e=$\frac{\sqrt{5}}{2}$,点A(0,1)与双曲线上的点的最小距离是$\frac{2}{5}$$\sqrt{30}$,求双曲线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数f(x)的定义域为(0,+∞)且f(x+y)=f(x)+f(y)对一切正实数x、y都成立,若f(8)=4,则f(2)=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.函数y=$|tan(-2x-\frac{π}{6})|$+3图象的对称轴方程为x=$\frac{kπ}{4}$-$\frac{π}{12}$,k∈Z,周期为π,单调递减区间为($\frac{kπ}{2}$-$\frac{π}{3}$,$\frac{kπ}{2}$-$\frac{π}{12}$],k∈Z,.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=lnx-2ax3(a>0),若|f(x)|≥$\frac{1}{2}$对于任意的x∈(0,1]恒成立,则实数a的取值范围为(  )
A.[$\frac{\sqrt{e}}{6}$,+∞)B.[$\frac{1}{6}$,$\frac{\sqrt{e}}{6}$]C.[$\frac{1}{6}$,+∞)D.[$\frac{1}{3}$,+∞)

查看答案和解析>>

同步练习册答案