精英家教网 > 高中数学 > 题目详情
4.已知正项等比数列{an}满足a1,2a2,a3+6成等差数列,且a42=9a1a5
(I)求数列{an}的通项公式;
(Ⅱ)设bn=(log${\;}_{\sqrt{3}}$an+1)•an,求数列{bn}的前n项和Tn

分析 (I)利用等差数列与等比数列的通项公式即可得出.
(II)bn=(log${\;}_{\sqrt{3}}$an+1)•an=(2n+1)•3n.再利用“错位相减法”与等比数列的前n项和公式即可得出.

解答 解:(I)设正项等比数列{an}的公比为q>0,∵a1,2a2,a3+6成等差数列,∴2×2a2=a3+6+a1,又a42=9a1a5
∴$\left\{\begin{array}{l}{4{a}_{1}q={a}_{1}{q}^{2}+6+{a}_{1}}\\{({a}_{1}{q}^{3})^{2}=9{a}_{1}^{2}{q}^{4}}\end{array}\right.$,解得a1=q=3.
∴an=3n
(II)bn=(log${\;}_{\sqrt{3}}$an+1)•an=(2n+1)•3n
∴数列{bn}的前n项和Tn=3×3+5×32+…+(2n+1)•3n
3Tn=3×32+5×33+…+(2n-1)•3n+(2n+1)•3n+1
∴-2Tn=32+2×(32+33+…+3n)-(2n+1)•3n+1=$2×\frac{3({3}^{n}-1)}{3-1}$+3-(2n+1)•3n+1=-2n•3n+1
∴Tn=n•3n+1

点评 本题考查了“错位相减法”、等差数列等比数列的通项公式及其前n项和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知二次函数y=x2-2ax+3,x∈[-1,1],设最大值为g(a),最小值为h(a).
(1)求g(a).
(2)求h(a).
(3)设a∈[0,1],若对任意的g(a),h(a),不等式g(a)log2m+2h(a)≤0恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.求与椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{5}$=1有共同焦点,过点(3$\sqrt{2}$,$\sqrt{2}$)的双曲线的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知$\overrightarrow{a}$=(-1,3),$\overrightarrow{b}$=(1,y).若$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为45°,则y=2或-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.数列{an}与{bn}中,a1=$\frac{3}{2}$,an•an+1-2an+1=0(n≥2),an•bn-bn=1.
(1)求证:数列{bn}是等差数列;
(2)求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知△ABC为钝角三角形,命题“p:对△ABC的任意两个内角α,β,都有cosα+cosβ>0”,下列结论正确的是(  )
A.¬p:对△ABC的任意两个内角α,β,都有cosα+cosβ≤0:假命题
B.¬p:对△ABC中存在两个内角α,β,都有cosα+cosβ≤0:真命题
C.¬p:对△ABC的任意两个内角α,β,都有cosα+cosβ≤0:真命题
D.¬p:对△ABC中存在两个内角α,β,都有cosα+cosβ≤0:假命题

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设0<a<$\frac{1}{2}$,则1-a2,1+a2,$\frac{1}{1-a}$,$\frac{1}{1+a}$按从小到大的顺序排列为$\frac{1}{1+a}$<1-a2<1+a2<$\frac{1}{1-a}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.求与直线5x-3y+3=0平行,且与直线5x-3y+3=0的距离为$\sqrt{17}$的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图:在四棱锥P-ABCD中,底面ABCD是平行四边形,BC⊥平面PAB,PA⊥AB,M为PB中点,PA=AD=2,AB=1.
(1)求证:PD∥面ACM;
(2)求VD-PMC

查看答案和解析>>

同步练习册答案