精英家教网 > 高中数学 > 题目详情
如图1,在四棱锥中,底面,面为正方形,为侧棱上一点,上一点.该四棱锥的正(主)视图和侧(左)视图如图2所示.

(Ⅰ)求四面体的体积;
(Ⅱ)证明:∥平面
(Ⅲ)证明:平面平面
(I);(II)详见解析;(Ⅲ)详见解析.

试题分析:(I)根据三视图等条件,求出棱锥底面积和高,可求体积;(II)在面PFC内找一直线平行AE即可证明∥平面;(III)证平面平面只需证明平面过平面的一条垂线即可.
试题解析:(Ⅰ)解:由左视图可得 的中点,
所以 △的面积为 .      1分
因为平面,                   2分
所以四面体的体积为
                      3分
.                     4分
(Ⅱ)证明:取中点,连结.                                  5分

由正(主)视图可得 的中点,所以.      6分
又因为, 所以
所以四边形为平行四边形,所以.                       8分
因为 平面平面
所以 直线∥平面.                                            9分
(Ⅲ)证明:因为 平面,所以
因为面为正方形,所以
所以 平面.                                               11分
因为 平面,所以 .      
因为 中点,所以
所以 平面.                                              12分
因为 ,所以平面.                               13分
因为 平面, 所以 平面平面.                   14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在多面体中,四边形是矩形,,平面.

(1)若点是中点,求证:.
(2)求证:.
(3)若.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,直三棱柱中,,D是AC的中点.

(Ⅰ)求证:平面
(Ⅱ)求几何体的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

四棱锥P-ABCD中,PA⊥平面ABCD,E为AD的中点,ABCE为菱形,∠BAD=120°,PA=AB,G、F分别是线段CE、PB的中点.

(Ⅰ) 求证:FG∥平面PDC;
(Ⅱ) 求二面角的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥中,底面,四边形中,.
(Ⅰ)求证:平面平面
(Ⅱ)设
(ⅰ) 若直线与平面所成的角为,求线段的长;
(ⅱ) 在线段上是否存在一个点,使得点到点的距离都相等?说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图1,四棱锥中,底面,面是直角梯形,为侧棱上一点.该四棱锥的俯视图和侧(左)视图如图2所示.   
(Ⅰ)证明:平面
(Ⅱ)证明:∥平面
(Ⅲ)线段上是否存在点,使所成角的余弦值为?若存在,找到所有符合要求的点,并求的长;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

右图所示的直观图,其原来平面图形的面积是         .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图1,在等腰梯形CDEF中,CB、DA是梯形的高,,现将梯形沿CB、DA折起,使,得一简单组合体如图2示,已知分别为的中点.
   
图1                              图2
(1)求证:平面
(2)求证:
(3)当多长时,平面与平面所成的锐二面角为

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,平面平面中点,中点.

(Ⅰ)求证:平面
(Ⅱ)求三棱锥的体积.

查看答案和解析>>

同步练习册答案