精英家教网 > 高中数学 > 题目详情

已知函数为常数,e=2.71828…是自然对数的底数),曲线在点处的切线与x轴平行.

(Ⅰ)求k的值;

(Ⅱ)求的单调区间;

(Ⅲ)设,其中的导函数.证明:对任意.

 

【答案】

(I) .(II)见解析

【解析】(I)

由已知,,∴.

(II)由(I)知,.

,则,即上是减函数,

知,当,从而

,从而.

综上可知,的单调递增区间是,单调递减区间是.

(III)由(II)可知,当时,≤0<1+,故只需证明时成立.

时,>1,且,∴.

,则

时,,当时,

所以当时,取得最大值.

所以.

综上,对任意

 

练习册系列答案
相关习题

科目:高中数学 来源:2012-2013学年湖北省高三(上)期末数学试卷(文科)(解析版) 题型:解答题

已知函数为常数,e=2.71828…是自然对数的底数),曲线y=f(x)在点(1,f(1))处的切线与x轴平行.
(Ⅰ)求k的值;
(Ⅱ)求f(x)的单调区间;
(Ⅲ)设g(x)=xf'(x),其中f'(x)为f(x)的导函数.证明:对任意x>0,g(x)<1+e-2

查看答案和解析>>

科目:高中数学 来源:2012-2013学年甘肃省陇南市西和一中高三(上)月考数学试卷(解析版) 题型:解答题

已知函数为常数,e=2.71828…是自然对数的底数),曲线y=f(x)在点(1,f(1))处的切线与x轴平行.
(Ⅰ)求k的值;
(Ⅱ)求f(x)的单调区间;
(Ⅲ)设g(x)=xf'(x),其中f'(x)为f(x)的导函数.证明:对任意x>0,g(x)<1+e-2

查看答案和解析>>

科目:高中数学 来源:2012-2013学年湖南省株洲市攸县二中高三数学试卷08(文科)(解析版) 题型:解答题

已知函数为常数,e=2.71828…是自然对数的底数),曲线y=f(x)在点(1,f(1))处的切线与x轴平行.
(Ⅰ)求k的值;
(Ⅱ)求f(x)的单调区间;
(Ⅲ)设g(x)=xf'(x),其中f'(x)为f(x)的导函数.证明:对任意x>0,g(x)<1+e-2

查看答案和解析>>

科目:高中数学 来源:2012-2013学年四川省遂宁市射洪中学高三零诊数学试卷(理科)(解析版) 题型:解答题

已知函数为常数,e=2.71828…是自然对数的底数),曲线y=f(x)在点(1,f(1))处的切线与x轴平行.
(Ⅰ)求k的值;
(Ⅱ)求f(x)的单调区间;
(Ⅲ)设g(x)=xf'(x),其中f'(x)为f(x)的导函数.证明:对任意x>0,g(x)<1+e-2

查看答案和解析>>

科目:高中数学 来源:2012年山东省高考数学试卷(文科)(解析版) 题型:解答题

已知函数为常数,e=2.71828…是自然对数的底数),曲线y=f(x)在点(1,f(1))处的切线与x轴平行.
(Ⅰ)求k的值;
(Ⅱ)求f(x)的单调区间;
(Ⅲ)设g(x)=xf'(x),其中f'(x)为f(x)的导函数.证明:对任意x>0,g(x)<1+e-2

查看答案和解析>>

同步练习册答案