精英家教网 > 高中数学 > 题目详情
13.如图,在四棱锥P-ABCD中,底面ABCD为菱形,∠DAB=60°.侧面PAD为正三角形,且平面PAD⊥平面ABCD,则下列说法错误的是(  )
A.在棱AD上存在点M,使AD⊥平面PMBB.异面直线AD与PB所成的角为90°
C.二面角P-BC-A的大小为45°D.BD⊥平面PAC

分析 根据线面垂直,异面直线所成角的大小以及二面角的求解方法分别进行判断即可.

解答 解:对于A,取AD的中点M,连PM,BM,则∵侧面PAD为正三角形,
∴PM⊥AD,
又底面ABCD是∠DAB=60°的菱形,
∴三角形ABD是等边三角形,
∴AD⊥BM,
∴AD⊥平面PBM,故A正确,
对于B,∵AD⊥平面PBM,
∴AD⊥PB,即异面直线AD与PB所成的角为90°,故B正确,
对于C,∵底面ABCD为菱形,∠DAB=60°平面PAD⊥平面ABCD,
∴BM⊥BC,则∠PBM是二面角P-BC-A的平面角,
设AB=1,则BM=$\frac{\sqrt{3}}{2}$,PM=$\frac{\sqrt{3}}{2}$,
在直角三角形PBM中,tan∠PBM=$\frac{PM}{BM}=1$,
即∠PBM=45°,故二面角P-BC-A的大小为45°,故C正确,
故错误的是D,
故选:D.

点评 本题主要考查空间直线和平面位置关系以及二面角的求解,根据相应的判断和证明方法是解决本题的关键.综合性较强,难度较大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.某中学举行电脑知识竞赛,将高一参赛学生的成绩进行整理后分成五组绘制成如图所示的频率分布直方图,则高一参赛学生成绩的中位数为65.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知ξ~B(n,p),Eξ=3,D(2ξ+1)=9,则P的值是$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)=$\left\{\begin{array}{l}x+1,x∈[{-1,0}]\\ \sqrt{1-{x^2}},x∈({0,1}]\end{array}\right.$,则$\int_{-1}^1$f(x)dx=$\frac{π}{4}+\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.解方程组:$\left\{\begin{array}{l}{a=-b(a-1)}\\{\frac{4}{\sqrt{{a}^{2}+{b}^{2}}}=\frac{|b|}{\sqrt{(a-1)^{2}+1}}}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设an为下述正整数N的个数:N的各位数字之和为n,且每位数字只能取1,3或4.
(1)求a1,a2,a3,a4的值;
(2)对?n∈N*,试探究a2n•a2n+2与a22n+1的大小关系,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.x2>0是x>0的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.判断下列命题的真假,其中全是真命题的组合是(  )
①若$\overrightarrow a$、$\overrightarrow b$均为非零向量,则$\overrightarrow a•\overrightarrow b=|{\overrightarrow a}|•|{\overrightarrow b}|$是$\overrightarrow a∥\overrightarrow b$的充分不必要条件;
②若$\overrightarrow a$、$\overrightarrow b-\overrightarrow c$是两个非零向量,则$\overrightarrow a•\overrightarrow b=\overrightarrow a•\overrightarrow c$是$\overrightarrow a⊥(\overrightarrow b-\overrightarrow c)$的充要条件;
③在△ABC中,若$\overrightarrow{AB}•\overrightarrow{BC}>0$,则△ABC是锐角三角形;
④在△ABC中,$\frac{{\overrightarrow{AB}}}{{|\overrightarrow{AB}|cos∠ABC}}+\frac{{\overrightarrow{AC}}}{{|\overrightarrow{AC}|cos∠ACB}}$与$\overrightarrow{BC}$向量垂直.
A.①②③B.①③④C.②③④D.①②④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知数列{an}的前n项和Sn=$\frac{1}{4}$(an-1)(n∈N×
(1)求a1和a2的值.
(2)求证:数列{an}为等比数列.

查看答案和解析>>

同步练习册答案